1 Instruções

2 Questão única: construindo uma casa 2D

Veja o seu número nesta lista.

Você vai achar equações para o chão, as paredes, a porta, e o telhado de uma casa no \(\mathbb{R}^2\).

Em todos os seus cálculos e respostas, use frações e radicais.

Não use valores numéricos com vírgulas decimais em momento algum.

Desenho

Sua casa vai ficar assim.

Não, o chão não vai ser horizontal.

A inclinação do chão vai depender do seu número nesta lista.

Chão

  • O chão da casa é o segmento que vai do ponto \(A\) até o ponto \(B\).

  • O ponto \(A\) é a origem: \(A = (0, 0)\).

  • Use as coordenadas de \(B\) que correspondem ao seu número.

  • Comece calculando o vetor \(\overrightarrow{AB}\).

  • Depois — vá por mim — ache um vetor unitário na mesma direção e sentido que \(\overrightarrow{AB}\).

  • Ache a equação da reta que contém o chão.

  • Coordenadas de \(B\) — use o item que corresponde ao valor de \(n\) para a sua matrícula:

    1. \(\quad B = \left(\frac{4}{15},\;\; \frac{8}{15} \; \sqrt{506}\right)\)

    2. \(\quad B = \left(\frac{8}{15},\;\; \frac{4}{15} \; \sqrt{2021}\right)\)

    3. \(\quad B = \left(\frac{4}{5},\;\; \frac{16}{5} \; \sqrt{14}\right)\)

    4. \(\quad B = \left(\frac{16}{15},\;\; \frac{28}{15} \; \sqrt{41}\right)\)

    5. \(\quad B = \left(\frac{4}{3},\;\; \frac{16}{3} \; \sqrt{5}\right)\)

    6. \(\quad B = \left(\frac{8}{5},\;\; \frac{4}{5} \; \sqrt{221}\right)\)

    7. \(\quad B = \left(\frac{28}{15},\;\; \frac{8}{15} \; \sqrt{494}\right)\)

    8. \(\quad B = \left(\frac{32}{15},\;\; \frac{4}{15} \; \sqrt{1961}\right)\)

    9. \(\quad B = \left(\frac{12}{5},\;\; \frac{24}{5} \; \sqrt{6}\right)\)

    10. \(\quad B = \left(\frac{8}{3},\;\; \frac{4}{3} \; \sqrt{77}\right)\)

    11. \(\quad B = \left(\frac{44}{15},\;\; \frac{16}{15} \; \sqrt{119}\right)\)

    12. \(\quad B = \left(\frac{16}{5},\;\; \frac{4}{5} \; \sqrt{209}\right)\)

    13. \(\quad B = \left(\frac{52}{15},\;\; \frac{32}{15} \; \sqrt{29}\right)\)

    14. \(\quad B = \left(\frac{56}{15},\;\; \frac{4}{15} \; \sqrt{1829}\right)\)

    15. \(\quad B = \left(4,\;\; 8 \; \sqrt{2}\right)\)

    16. \(\quad B = \left(\frac{64}{15},\;\; \frac{4}{15} \; \sqrt{1769}\right)\)

    17. \(\quad B = \left(\frac{68}{15},\;\; \frac{8}{15} \; \sqrt{434}\right)\)

    18. \(\quad B = \left(\frac{24}{5},\;\; \frac{12}{5} \; \sqrt{21}\right)\)

    19. \(\quad B = \left(\frac{76}{15},\;\; \frac{32}{15} \; \sqrt{26}\right)\)

    20. \(\quad B = \left(\frac{16}{3},\;\; \frac{4}{3} \; \sqrt{65}\right)\)

    21. \(\quad B = \left(\frac{28}{5},\;\; \frac{16}{5} \; \sqrt{11}\right)\)

    22. \(\quad B = \left(\frac{88}{15},\;\; \frac{4}{15} \; \sqrt{1541}\right)\)

    23. \(\quad B = \left(\frac{92}{15},\;\; \frac{8}{15} \; \sqrt{374}\right)\)

    24. \(\quad B = \left(\frac{32}{5},\;\; \frac{4}{5} \; \sqrt{161}\right)\)

    25. \(\quad B = \left(\frac{20}{3},\;\; \frac{8}{3} \; \sqrt{14}\right)\)

    26. \(\quad B = \left(\frac{104}{15},\;\; \frac{4}{15} \; \sqrt{1349}\right)\)

    27. \(\quad B = \left(\frac{36}{5},\;\; \frac{48}{5}\right)\)

    28. \(\quad B = \left(\frac{112}{15},\;\; \frac{4}{15} \; \sqrt{1241}\right)\)

    29. \(\quad B = \left(\frac{116}{15},\;\; \frac{16}{15} \; \sqrt{74}\right)\)

    30. \(\quad B = \left(8,\;\; 4 \; \sqrt{5}\right)\)

    31. \(\quad B = \left(\frac{124}{15},\;\; \frac{8}{15} \; \sqrt{266}\right)\)

    32. \(\quad B = \left(\frac{128}{15},\;\; \frac{4}{15} \; \sqrt{1001}\right)\)

    33. \(\quad B = \left(\frac{44}{5},\;\; \frac{8}{5} \; \sqrt{26}\right)\)

    34. \(\quad B = \left(\frac{136}{15},\;\; \frac{4}{15} \; \sqrt{869}\right)\)

    35. \(\quad B = \left(\frac{28}{3},\;\; \frac{16}{3} \; \sqrt{2}\right)\)

    36. \(\quad B = \left(\frac{48}{5},\;\; \frac{36}{5}\right)\)

    37. \(\quad B = \left(\frac{148}{15},\;\; \frac{16}{15} \; \sqrt{41}\right)\)

    38. \(\quad B = \left(\frac{152}{15},\;\; \frac{4}{15} \; \sqrt{581}\right)\)

    39. \(\quad B = \left(\frac{52}{5},\;\; \frac{8}{5} \; \sqrt{14}\right)\)

    40. \(\quad B = \left(\frac{32}{3},\;\; \frac{4}{3} \; \sqrt{17}\right)\)

    41. \(\quad B = \left(\frac{164}{15},\;\; \frac{8}{15} \; \sqrt{86}\right)\)

    42. \(\quad B = \left(\frac{56}{5},\;\; \frac{4}{5} \; \sqrt{29}\right)\)

    43. \(\quad B = \left(\frac{172}{15},\;\; \frac{16}{15} \; \sqrt{11}\right)\)

    44. \(\quad B = \left(\frac{176}{15},\;\; \frac{4}{15} \; \sqrt{89}\right)\)

Paredes

  • A altura das paredes, sem contar o telhado (ou seja, a distância de \(A\) a \(D\)), é \(1/3\) da largura da casa.

  • As paredes são perpendiculares ao chão.

  • Calcule as coordenadas de \(C\) e \(D\).

  • Escreva as equações das duas retas que contêm as paredes.

Telhado

  • A altura do teto até o topo do telhado (o ponto \(E\)) é \(1/6\) da largura da casa.

    Ou seja, a altura do chão até o topo do telhado é \(1/2\) da largura da casa.

  • As duas partes do telhado têm o mesmo comprimento.

  • Calcule as coordenadas de \(E\).

  • Ache as equações das retas que contêm os lados do telhado.

  • Use o produto escalar para descobrir o ângulo no topo do telhado (no ponto \(E\)).

  • Use o produto escalar para achar a área do triângulo azul.

Porta

  • A largura da porta é \(1/3\) da largura da casa.

  • A porta está centralizada horizontalmente na fachada.

  • A altura da porta é \(1/6\) da largura da casa.

  • Calcule as coordenadas de \(H\) e \(I\).

3 Números dos alunos, por matrícula

matrícula n
119060029 33
122060003 24
122060004 35
122060005 26
122060006 4
122060007 29
122060008 6
122060009 32
122060010 7
122060011 17
122060012 14
122060013 37
122060014 38
122060015 23
122060016 39
122060017 15
122060018 12
122060019 36
122060020 22
122060021 5
122060022 18
122060023 19
122060028 27
122060029 21
122060030 30
122060031 16
122060033 42
122060034 9
122060035 10
122060036 13
122060038 2
122060040 1
122060041 3
215060056 40
220060041 28
221060040 8
221060047 11
622060024 20
622060025 25
622060026 31
622060027 34
822060037 41
LS0tCnRpdGxlOiAnTGlzdGEgMScKc3VidGl0bGU6ICdHZW9tZXRyaWEgQW5hbMOtdGljYSAyMDIyLjEnCmF1dGhvcjogJ1Byb2YuIEZlcm5hbmRvIE7DoXVmZWwnCmVtYWlsOiAnaHR0cHM6Ly9mbmF1ZmVsLmdpdGh1Yi5pby8nCmRhdGU6ICcodi4gYHIgZm9ybWF0KFN5cy5EYXRlKCksICIlZC8lbS8lWSIpYCknCmxhbmc6ICdwdC1icicKCm91dHB1dDogCiAgIyBUbyBpbnN0YWxsIHRoZXNlIG91dHB1dCBmb3JtYXRzLCBydW4KICAjICAgaW5zdGFsbC5wYWNrYWdlcygiZGV2dG9vbHMiKQogICMgICBkZXZ0b29sczo6aW5zdGFsbF9naXRodWIoImZuYXVmZWwvZm5hdWZlbFJtZCIpCiAgZm5hdWZlbFJtZDo6aHRtbF9yZXBvcnQ6CiAgICBbXQogIGZuYXVmZWxSbWQ6OnBkZl9yZXBvcnQ6CiAgICBbXQoKIyBMYVRlWCAvIHBkZiBvcHRpb25zCiMKIyBGb3IgbW9yZSBvcHRpb25zLCBzZWUKIyBodHRwczovL3BhbmRvYy5vcmcvTUFOVUFMLmh0bWwjdmFyaWFibGVzLWZvci1sYXRleApkb2N1bWVudGNsYXNzOiBhcnRpY2xlCmNsYXNzb3B0aW9uOiAnMTFwdCcKZ2VvbWV0cnk6ICdtYXJnaW49MWluJwpiaWJsaW9ncmFwaHk6IFtdCmJpYmxpby1zdHlsZTogYXBhbGlrZQpsaW5rLWNpdGF0aW9uczogeWVzCi0tLQoKYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0V9CiMgVGhlIG5leHQgY29tbWFuZCBjb25maWd1cmVzIE1BTlkgdGhpbmdzIGFuZCBsb2FkcyBxdWl0ZSBhIGZldyBwYWNrYWdlcy4KIyAKIyBJZiB5b3Ugd2FudCB0byBzZWUgd2hhdCdzIGJlaW5nIGRvbmUsIGV4ZWN1dGUgCiMgCiMgICBjYXQoCiMgICAgIHN5c3RlbS5maWxlKAojICAgICAgICJybWFya2Rvd24vcmVzb3VyY2VzL1IvX2NvbW1vbl9yZXBvcnQuUiIsIAojICAgICAgIHBhY2thZ2UgPSAiZm5hdWZlbFJtZCIKIyAgICAgKQojICAgKQojIAojIHRvIGZpbmQgb3V0IHRoZSBsb2NhdGlvbiBvZiB0aGUgZmlsZS4gVGhlbiBvcGVuIHRoZSBmaWxlLgojIAojIElmIHlvdSB3YW50IHRvIGNoYW5nZSB0aGUgY29uZmlndXJhdGlvbiwgY29weSB0aGUgZmlsZSwgZWRpdCBpdCwgYW5kCiMgc291cmNlIGl0IGluc3RlYWQgb2YgdGhlIHBhY2thZ2UgZmlsZS4gCiMgCiMgT3Igc2ltcGx5IHdyaXRlIHlvdXIgY29tbWFuZHMgaGVyZSBpbiB0aGlzIGNvZGUgY2h1bmsuCgpzb3VyY2UoCiAgc3lzdGVtLmZpbGUoCiAgICAicm1hcmtkb3duL3Jlc291cmNlcy9SL19jb21tb25fcmVwb3J0LlIiLAogICAgcGFja2FnZSA9ICJmbmF1ZmVsUm1kIgogICkKKQpgYGAKCgojIEluc3RydcOnw7VlcwoKKiBGaXF1ZSDDoCB2b250YWRlIHBhcmEgY29uc3VsdGFyIG9zIGNvbGVndWluaGFzIGUgcGFyYSB1c2FyIHByb2dyYW1hcyBjb21vIG8gR2VvZ2VicmEsIG1hcyBbc29tZW50ZSBzb2x1w6fDtWVzICphbmFsw610aWNhcyogc2Vyw6NvIGFjZWl0YXMgLS0tIG5hZGEgZGUgcmVzcG9uZGVyIG5vIG9saMO0bWV0cm8uXXsuaGx9CgoqIERvY3VtZW50ZSBkYSBmb3JtYSBtYWlzIGNsYXJhIHBvc3PDrXZlbCBbdG9kb3Mgb3MgcGFzc29zXXsuaGx9IGRhIHJlc29sdcOnw6NvIGRlIGNhZGEgcXVlc3TDo28uCgoqIEVudHJlZ3VlIFsodmlhIE1vb2RsZSldey5obH0gc3VhIHJlc29sdcOnw6NvIGVzY3JpdGEgbm8gZm9ybWF0byBxdWUgdm9jw6ogcHJlZmVyaXI6IG1hbnVzY3JpdG8gZXNjYW5lYWRvIG91IGZvdG9ncmFmYWRvLCBkb2N1bWVudG8gZ2VyYWRvIHZpYSAkXExhVGVYJCBldGMuIE8gaW1wb3J0YW50ZSDDqSBxdWUgYSByZXNvbHXDp8OjbyBlc3RlamEgbGVnw612ZWwuIFtTZSB2b2PDqiBmb3IgZm90b2dyYWZhciBzdWEgcmVzb2x1w6fDo28sIHVzZSB1bSBhcGxpY2F0aXZvIGNvbW8gW0NsZWFyIFNjYW5dKGh0dHBzOi8vcGxheS5nb29nbGUuY29tL3N0b3JlL2FwcHMvZGV0YWlscz9pZD1jb20uaW5keW1vYmlsZWFwcC5kb2N1bWVudC5zY2FubmVyKSBwYXJhIGdlcmFyIHVtIHJlc3VsdGFkbyBtZWxob3IuXXsuaGx9CgoqIEFsw6ltIGRhIHJlc29sdcOnw6NvIHBvciBlc2NyaXRvLCBlbnRyZWd1ZSB0YW1iw6ltIFsodmlhIE1vb2RsZSldey5obH0gdW0gYXJxdWl2byBjb250ZW5kbyB1bSB2w61kZW8gZGUgbm8gbcOheGltbyA1IG1pbnV0b3Mgb25kZSB2b2PDqiBleHBsaWNhIGVtIGRldGFsaGVzIGEgcmVzb2x1w6fDo28gZGUgdW1hIHBhcnRlIGRhIHN1YSBxdWVzdMOjby4KCiogQm9tIHRyYWJhbGhvLgoKCiMgUXVlc3TDo28gw7puaWNhOiBjb25zdHJ1aW5kbyB1bWEgY2FzYSAyRAoKW1ZlamEgbyBzZXUgbsO6bWVybyBuZXN0YSBsaXN0YS5dKCNudW1zKQoKVm9jw6ogdmFpIGFjaGFyIGVxdWHDp8O1ZXMgcGFyYSBvIGNow6NvLCBhcyBwYXJlZGVzLCBhIHBvcnRhLCBlIG8gdGVsaGFkbyBkZSB1bWEgY2FzYSBubyAkXG1hdGhiYntSfV4yJC4KCjo6OiB7LnJtZGltcG9ydGFudH0KCkVtIHRvZG9zIG9zIHNldXMgY8OhbGN1bG9zIGUgcmVzcG9zdGFzLCBbdXNlIGZyYcOnw7VlcyBlIHJhZGljYWlzLl17LmhsfSAKCltOw6NvIHVzZSB2YWxvcmVzIG51bcOpcmljb3MgY29tIHbDrXJndWxhcyBkZWNpbWFpcyBlbSBtb21lbnRvIGFsZ3VtLl17LmhsfQoKOjo6CgoKIyMgRGVzZW5obyB7LX0KClN1YSBjYXNhIHZhaSBmaWNhciBhc3NpbS4gCgpOw6NvLCBvIGNow6NvIG7Do28gdmFpIHNlciBob3Jpem9udGFsLgoKQSBpbmNsaW5hw6fDo28gZG8gY2jDo28gdmFpIGRlcGVuZGVyIGRvIHNldSBuw7ptZXJvIFtuZXN0YSBsaXN0YV0oI251bXMpLgoKYGBge3IgZWNobz1GQUxTRX0Ka25pdHI6OmluY2x1ZGVfZ3JhcGhpY3MoJ2Nhc2EyZC5wbmcnKQpgYGAKCgojIyBDaMOjbyB7LX0KCiogTyBjaMOjbyBkYSBjYXNhIMOpIG8gc2VnbWVudG8gcXVlIHZhaSBkbyBwb250byAkQSQgYXTDqSBvIHBvbnRvICRCJC4gCgoqIE8gcG9udG8gJEEkIMOpIGEgb3JpZ2VtOiAkQSA9ICgwLCAwKSQuCgoqIFVzZSBhcyBjb29yZGVuYWRhcyBkZSAkQiQgcXVlIFtjb3JyZXNwb25kZW0gYW8gc2V1IG7Dum1lcm9dKCNudW1zKS4KCiogQ29tZWNlIGNhbGN1bGFuZG8gW28gdmV0b3IgJFxvdmVycmlnaHRhcnJvd3tBQn0kXXsuaGx9LgoKKiBEZXBvaXMgLS0tIHbDoSBwb3IgbWltIC0tLSBbYWNoZSB1bSB2ZXRvciB1bml0w6FyaW9dey5obH0gbmEgbWVzbWEgZGlyZcOnw6NvIGUgc2VudGlkbyBxdWUgJFxvdmVycmlnaHRhcnJvd3tBQn0kLgoKKiBBY2hlIFthIGVxdWHDp8OjbyBkYSByZXRhIHF1ZSBjb250w6ltIG8gY2jDo29dey5obH0uCgoqIENvb3JkZW5hZGFzIGRlICRCJCAtLS0gdXNlIG8gaXRlbSBxdWUgY29ycmVzcG9uZGUgYW8gW3ZhbG9yIGRlICRuJCBwYXJhIGEgc3VhIG1hdHLDrWN1bGFdey5obH06CgogIGBgYHtyIGVjaG89RkFMU0UsIHJlc3VsdHM9J2FzaXMnfQogIHhCIDwtIGMoCiAgICAnXFxmcmFjezR9ezE1fScsCiAgICAnXFxmcmFjezh9ezE1fScsCiAgICAnXFxmcmFjezR9ezV9JywKICAgICdcXGZyYWN7MTZ9ezE1fScsCiAgICAnXFxmcmFjezR9ezN9JywKICAgICdcXGZyYWN7OH17NX0nLAogICAgJ1xcZnJhY3syOH17MTV9JywKICAgICdcXGZyYWN7MzJ9ezE1fScsCiAgICAnXFxmcmFjezEyfXs1fScsCiAgICAnXFxmcmFjezh9ezN9JywKICAgICdcXGZyYWN7NDR9ezE1fScsCiAgICAnXFxmcmFjezE2fXs1fScsCiAgICAnXFxmcmFjezUyfXsxNX0nLAogICAgJ1xcZnJhY3s1Nn17MTV9JywKICAgICc0JywKICAgICdcXGZyYWN7NjR9ezE1fScsCiAgICAnXFxmcmFjezY4fXsxNX0nLAogICAgJ1xcZnJhY3syNH17NX0nLAogICAgJ1xcZnJhY3s3Nn17MTV9JywKICAgICdcXGZyYWN7MTZ9ezN9JywKICAgICdcXGZyYWN7Mjh9ezV9JywKICAgICdcXGZyYWN7ODh9ezE1fScsCiAgICAnXFxmcmFjezkyfXsxNX0nLAogICAgJ1xcZnJhY3szMn17NX0nLAogICAgJ1xcZnJhY3syMH17M30nLAogICAgJ1xcZnJhY3sxMDR9ezE1fScsCiAgICAnXFxmcmFjezM2fXs1fScsCiAgICAnXFxmcmFjezExMn17MTV9JywKICAgICdcXGZyYWN7MTE2fXsxNX0nLAogICAgJzgnLAogICAgJ1xcZnJhY3sxMjR9ezE1fScsCiAgICAnXFxmcmFjezEyOH17MTV9JywKICAgICdcXGZyYWN7NDR9ezV9JywKICAgICdcXGZyYWN7MTM2fXsxNX0nLAogICAgJ1xcZnJhY3syOH17M30nLAogICAgJ1xcZnJhY3s0OH17NX0nLAogICAgJ1xcZnJhY3sxNDh9ezE1fScsCiAgICAnXFxmcmFjezE1Mn17MTV9JywKICAgICdcXGZyYWN7NTJ9ezV9JywKICAgICdcXGZyYWN7MzJ9ezN9JywKICAgICdcXGZyYWN7MTY0fXsxNX0nLAogICAgJ1xcZnJhY3s1Nn17NX0nLAogICAgJ1xcZnJhY3sxNzJ9ezE1fScsCiAgICAnXFxmcmFjezE3Nn17MTV9JwogICkKICAKICB5QiA8LSBjKAogICAgJ1xcZnJhY3s4fXsxNX0gXFw7IFxcc3FydHs1MDZ9JywKICAgICdcXGZyYWN7NH17MTV9IFxcOyBcXHNxcnR7MjAyMX0nLAogICAgJ1xcZnJhY3sxNn17NX0gXFw7IFxcc3FydHsxNH0nLAogICAgJ1xcZnJhY3syOH17MTV9IFxcOyBcXHNxcnR7NDF9JywKICAgICdcXGZyYWN7MTZ9ezN9IFxcOyBcXHNxcnR7NX0nLAogICAgJ1xcZnJhY3s0fXs1fSBcXDsgXFxzcXJ0ezIyMX0nLAogICAgJ1xcZnJhY3s4fXsxNX0gXFw7IFxcc3FydHs0OTR9JywKICAgICdcXGZyYWN7NH17MTV9IFxcOyBcXHNxcnR7MTk2MX0nLAogICAgJ1xcZnJhY3syNH17NX0gXFw7IFxcc3FydHs2fScsCiAgICAnXFxmcmFjezR9ezN9IFxcOyBcXHNxcnR7Nzd9JywKICAgICdcXGZyYWN7MTZ9ezE1fSBcXDsgXFxzcXJ0ezExOX0nLAogICAgJ1xcZnJhY3s0fXs1fSBcXDsgXFxzcXJ0ezIwOX0nLAogICAgJ1xcZnJhY3szMn17MTV9IFxcOyBcXHNxcnR7Mjl9JywKICAgICdcXGZyYWN7NH17MTV9IFxcOyBcXHNxcnR7MTgyOX0nLAogICAgJzggXFw7IFxcc3FydHsyfScsCiAgICAnXFxmcmFjezR9ezE1fSBcXDsgXFxzcXJ0ezE3Njl9JywKICAgICdcXGZyYWN7OH17MTV9IFxcOyBcXHNxcnR7NDM0fScsCiAgICAnXFxmcmFjezEyfXs1fSBcXDsgXFxzcXJ0ezIxfScsCiAgICAnXFxmcmFjezMyfXsxNX0gXFw7IFxcc3FydHsyNn0nLAogICAgJ1xcZnJhY3s0fXszfSBcXDsgXFxzcXJ0ezY1fScsCiAgICAnXFxmcmFjezE2fXs1fSBcXDsgXFxzcXJ0ezExfScsCiAgICAnXFxmcmFjezR9ezE1fSBcXDsgXFxzcXJ0ezE1NDF9JywKICAgICdcXGZyYWN7OH17MTV9IFxcOyBcXHNxcnR7Mzc0fScsCiAgICAnXFxmcmFjezR9ezV9IFxcOyBcXHNxcnR7MTYxfScsCiAgICAnXFxmcmFjezh9ezN9IFxcOyBcXHNxcnR7MTR9JywKICAgICdcXGZyYWN7NH17MTV9IFxcOyBcXHNxcnR7MTM0OX0nLAogICAgJ1xcZnJhY3s0OH17NX0nLAogICAgJ1xcZnJhY3s0fXsxNX0gXFw7IFxcc3FydHsxMjQxfScsCiAgICAnXFxmcmFjezE2fXsxNX0gXFw7IFxcc3FydHs3NH0nLAogICAgJzQgXFw7IFxcc3FydHs1fScsCiAgICAnXFxmcmFjezh9ezE1fSBcXDsgXFxzcXJ0ezI2Nn0nLAogICAgJ1xcZnJhY3s0fXsxNX0gXFw7IFxcc3FydHsxMDAxfScsCiAgICAnXFxmcmFjezh9ezV9IFxcOyBcXHNxcnR7MjZ9JywKICAgICdcXGZyYWN7NH17MTV9IFxcOyBcXHNxcnR7ODY5fScsCiAgICAnXFxmcmFjezE2fXszfSBcXDsgXFxzcXJ0ezJ9JywKICAgICdcXGZyYWN7MzZ9ezV9JywKICAgICdcXGZyYWN7MTZ9ezE1fSBcXDsgXFxzcXJ0ezQxfScsCiAgICAnXFxmcmFjezR9ezE1fSBcXDsgXFxzcXJ0ezU4MX0nLAogICAgJ1xcZnJhY3s4fXs1fSBcXDsgXFxzcXJ0ezE0fScsCiAgICAnXFxmcmFjezR9ezN9IFxcOyBcXHNxcnR7MTd9JywKICAgICdcXGZyYWN7OH17MTV9IFxcOyBcXHNxcnR7ODZ9JywKICAgICdcXGZyYWN7NH17NX0gXFw7IFxcc3FydHsyOX0nLAogICAgJ1xcZnJhY3sxNn17MTV9IFxcOyBcXHNxcnR7MTF9JywKICAgICdcXGZyYWN7NH17MTV9IFxcOyBcXHNxcnR7ODl9JwogICkKICAKICBiIDwtIHBhc3RlMCgKICAgICdCID0gXFxsZWZ0KCcsIHhCLCAnLFxcO1xcOyAnLCB5QiwgJ1xccmlnaHQpJCcKICApCiAgCiAgcGFzdGUwKAogICAgJzEuICRcXHF1YWQgJywKICAgIGIsCiAgICBjb2xsYXBzZSA9ICdcblxuJwogICkgJT4lIAogICAgY2F0KCkKICBgYGAKCgojIyBQYXJlZGVzIHstfQoKKiBBIFthbHR1cmEgZGFzIHBhcmVkZXNdey5obH0sIHNlbSBjb250YXIgbyB0ZWxoYWRvIChvdSBzZWphLCBhIGRpc3TDom5jaWEgZGUgJEEkIGEgJEQkKSwgW8OpICQxLzMkIGRhIGxhcmd1cmEgZGEgY2FzYV17LmhsfS4KCiogQXMgcGFyZWRlcyBzw6NvIHBlcnBlbmRpY3VsYXJlcyBhbyBjaMOjby4KCiogQ2FsY3VsZSBhcyBbY29vcmRlbmFkYXMgZGUgJEMkIGUgJEQkXXsuaGx9LgoKKiBFc2NyZXZhIGFzIFtlcXVhw6fDtWVzIGRhcyBkdWFzIHJldGFzIHF1ZSBjb250w6ptIGFzIHBhcmVkZXNdey5obH0uCgoKIyMgVGVsaGFkbyB7LX0KCiogQSBbYWx0dXJhIGRvIHRldG8gYXTDqSBvIHRvcG8gZG8gdGVsaGFkb117LmhsfSAobyBwb250byAkRSQpIFvDqSAkMS82JCBkYSBsYXJndXJhIGRhIGNhc2Fdey5obH0uCgogIE91IHNlamEsIFthIGFsdHVyYSBkbyBjaMOjbyBhdMOpIG8gdG9wbyBkbyB0ZWxoYWRvIMOpICQxLzIkIGRhIGxhcmd1cmEgZGEgY2FzYV17LmhsfS4KICAKKiBBcyBkdWFzIHBhcnRlcyBkbyB0ZWxoYWRvIHTDqm0gbyBtZXNtbyBjb21wcmltZW50by4KCiogQ2FsY3VsZSBhcyBbY29vcmRlbmFkYXMgZGUgJEUkXXsuaGx9LgoKKiBBY2hlIGFzIFtlcXVhw6fDtWVzIGRhcyByZXRhcyBxdWUgY29udMOqbSBvcyBsYWRvcyBkbyB0ZWxoYWRvXXsuaGx9LgoKKiBVc2UgbyBbcHJvZHV0byBlc2NhbGFyXXsuaGx9IHBhcmEgZGVzY29icmlyIG8gW8Oibmd1bG8gbm8gdG9wbyBkbyB0ZWxoYWRvXXsuaGx9IChubyBwb250byAkRSQpLgoKKiBVc2UgbyBbcHJvZHV0byBlc2NhbGFyXXsuaGx9IHBhcmEgYWNoYXIgYSBbw6FyZWEgZG8gdHJpw6JuZ3VsbyBhenVsXXsuaGx9LgoKCiMjIFBvcnRhIHstfQoKKiBBIFtsYXJndXJhIGRhIHBvcnRhXXsuaGx9IMOpIFskMS8zJCBkYSBsYXJndXJhIGRhIGNhc2Fdey5obH0uIAoKKiBBIHBvcnRhIGVzdMOhIGNlbnRyYWxpemFkYSBob3Jpem9udGFsbWVudGUgbmEgZmFjaGFkYS4KCiogQSBbYWx0dXJhIGRhIHBvcnRhXXsuaGx9IMOpIFskMS82JCBkYSBsYXJndXJhIGRhIGNhc2Fdey5obH0uCgoqIENhbGN1bGUgYXMgW2Nvb3JkZW5hZGFzIGRlICRIJCBlICRJJF17LmhsfS4KCgojIE7Dum1lcm9zIGRvcyBhbHVub3MsIHBvciBtYXRyw61jdWxhIHsgI251bXMgfQoKYGBge3IgZWNobz1GQUxTRX0Kc2V0LnNlZWQoMTIzNCkKCm1hdHLDrWN1bGEgPC0gYygKICAyMjAwNjAwNDEsCiAgMTIyMDYwMDMxLAogIDEyMjA2MDAyMCwKICAxMjIwNjAwMTMsCiAgMTIyMDYwMDM0LAogIDEyMjA2MDAyMSwKICA4MjIwNjAwMzcsCiAgMTIyMDYwMDA2LAogIDYyMjA2MDAyNywKICAyMTUwNjAwNTYsCiAgMTIyMDYwMDA1LAogIDEyMjA2MDAwOCwKICAxMjIwNjAwMTcsCiAgMTIyMDYwMDEyLAogIDYyMjA2MDAyNCwKICAxMjIwNjAwMDcsCiAgMTIyMDYwMDAzLAogIDEyMjA2MDAwNCwKICA2MjIwNjAwMjUsCiAgMTIyMDYwMDI5LAogIDIyMTA2MDA0MCwKICAxMjIwNjAwMzMsCiAgMTIyMDYwMDQxLAogIDEyMjA2MDAwOSwKICAxMjIwNjAwMTYsCiAgMTIyMDYwMDM4LAogIDEyMjA2MDAyOCwKICAxMjIwNjAwMzAsCiAgMTE5MDYwMDI5LAogIDIyMTA2MDA0NywKICAxMjIwNjAwMjMsCiAgMTIyMDYwMDE1LAogIDEyMjA2MDAxMCwKICAxMjIwNjAwMTQsCiAgMTIyMDYwMDM2LAogIDYyMjA2MDAyNiwKICAxMjIwNjAwMTgsCiAgMTIyMDYwMDExLAogIDEyMjA2MDAxOSwKICAxMjIwNjAwMjIsCiAgMTIyMDYwMDQwLAogIDEyMjA2MDAzNSAgCikgIAoKbiA8LSBzYW1wbGUoMTpsZW5ndGgobWF0csOtY3VsYSkpCgpkZiA8LSB0aWJibGUobWF0csOtY3VsYSwgbikgJT4lIAogIGFycmFuZ2UobWF0csOtY3VsYSkKCmRmICU+JSBrYmwoKSAlPiUgCmthYmxlX3BhcGVyKAogIGMoJ3N0cmlwZWQnLCAnaG92ZXInKSwKICBmdWxsX3dpZHRoID0gRkFMU0UKKQpgYGAKCgo8ZGl2IHN0eWxlPSdoZWlnaHQ6IDEwMDBweCc+PC9kaXY+Cg==