1 Instruções

2 Questão única: construindo um emoji com cônicas

Os dados da sua questão dependem do valor de \(n\) sorteado para você.

Veja o seu valor de \(n\) nesta lista.

Você vai achar equações de cônicas que são o rosto, os olhos, o nariz, a boca e as orelhas de um emoji no \(\mathbb{R}^2\).

Além disso, você vai achar inequações envolvendo cônicas que correspondem às áreas preenchidas da boca e das orelhas.

Em todos os seus cálculos e respostas, use frações e radicais.

Não use valores numéricos com vírgulas decimais em momento algum.

Seu emoji vai ficar assim:

2.1 Rosto

  • O rosto é o círculo de equação geral dada abaixo (veja o seu número \(n\) nesta lista).

  • Ache a equação canônica deste círculo.

    1. \(\displaystyle \quad x^{2} + 2 x + y^{2} + 4 y - 4 = 0\)

    2. \(\displaystyle \quad x^{2} + 2 x + y^{2} + 4 y + 4 = 0\)

    3. \(\displaystyle \quad x^{2} - 4 x + y^{2} - 4 y - 1 = 0\)

    4. \(\displaystyle \quad x^{2} - 2 x + y^{2} + 2 y + 1 = 0\)

    5. \(\displaystyle \quad x^{2} - 4 x + y^{2} - 2 y + 1 = 0\)

    6. \(\displaystyle \quad x^{2} - 2 x + y^{2} - 2 y - 2 = 0\)

    7. \(\displaystyle \quad x^{2} + 4 x + y^{2} + 4 y - 1 = 0\)

    8. \(\displaystyle \quad x^{2} - 4 x + y^{2} - 4 y - 8 = 0\)

    9. \(\displaystyle \quad x^{2} + 4 x + y^{2} - 4 y + 7 = 0\)

    10. \(\displaystyle \quad x^{2} + 2 x + y^{2} - 4 y - 4 = 0\)

    11. \(\displaystyle \quad x^{2} - 4 x + y^{2} - 2 y - 11 = 0\)

    12. \(\displaystyle \quad x^{2} - 4 x + y^{2} + 4 y + 7 = 0\)

    13. \(\displaystyle \quad x^{2} + 4 x + y^{2} - 2 y + 1 = 0\)

    14. \(\displaystyle \quad x^{2} - 2 x + y^{2} - 2 y - 7 = 0\)

    15. \(\displaystyle \quad x^{2} + 2 x + y^{2} - 2 y - 7 = 0\)

    16. \(\displaystyle \quad x^{2} - 2 x + y^{2} + 4 y + 1 = 0\)

    17. \(\displaystyle \quad x^{2} - 2 x + y^{2} - 2 y - 14 = 0\)

    18. \(\displaystyle \quad x^{2} - 2 x + y^{2} + 4 y - 4 = 0\)

    19. \(\displaystyle \quad x^{2} - 2 x + y^{2} - 4 y + 4 = 0\)

    20. \(\displaystyle \quad x^{2} + 2 x + y^{2} + 2 y - 2 = 0\)

    21. \(\displaystyle \quad x^{2} - 4 x + y^{2} - 2 y - 4 = 0\)

    22. \(\displaystyle \quad x^{2} + 2 x + y^{2} + 2 y - 7 = 0\)

    23. \(\displaystyle \quad x^{2} - 4 x + y^{2} + 2 y - 4 = 0\)

    24. \(\displaystyle \quad x^{2} + 2 x + y^{2} - 2 y - 2 = 0\)

    25. \(\displaystyle \quad x^{2} + 4 x + y^{2} + 2 y - 4 = 0\)

    26. \(\displaystyle \quad x^{2} + 4 x + y^{2} - 4 y - 1 = 0\)

    27. \(\displaystyle \quad x^{2} - 4 x + y^{2} - 4 y + 7 = 0\)

    28. \(\displaystyle \quad x^{2} - 4 x + y^{2} + 4 y - 1 = 0\)

    29. \(\displaystyle \quad x^{2} + 4 x + y^{2} - 2 y - 11 = 0\)

    30. \(\displaystyle \quad x^{2} - 2 x + y^{2} - 2 y + 1 = 0\)

    31. \(\displaystyle \quad x^{2} + 2 x + y^{2} + 2 y - 14 = 0\)

    32. \(\displaystyle \quad x^{2} + 4 x + y^{2} + 2 y + 4 = 0\)

    33. \(\displaystyle \quad x^{2} + 4 x + y^{2} - 2 y - 4 = 0\)

    34. \(\displaystyle \quad x^{2} + 4 x + y^{2} + 4 y - 8 = 0\)

    35. \(\displaystyle \quad x^{2} + 2 x + y^{2} - 2 y + 1 = 0\)

    36. \(\displaystyle \quad x^{2} + 2 x + y^{2} - 4 y - 11 = 0\)

    37. \(\displaystyle \quad x^{2} - 4 x + y^{2} - 4 y + 4 = 0\)

    38. \(\displaystyle \quad x^{2} - 4 x + y^{2} + 2 y + 1 = 0\)

    39. \(\displaystyle \quad x^{2} - 4 x + y^{2} + 4 y - 8 = 0\)

    40. \(\displaystyle \quad x^{2} - 2 x + y^{2} + 2 y - 7 = 0\)

    41. \(\displaystyle \quad x^{2} - 2 x + y^{2} + 2 y - 14 = 0\)

    42. \(\displaystyle \quad x^{2} - 2 x + y^{2} - 4 y - 4 = 0\)

  • Vamos resolver o item \(1\). Os passos são os mesmos para todos os itens; só mudam os valores.

  • A equação é

    \[x^{2} + 2 x + y^{2} + 4 y - 4\]

  • Vamos separar os termos em \(x\):

    \[x^{2} + 2 x\]

  • Completando o quadrado, isto é igual a:

    \[\left(x + 1\right)^{2} - 1\]

  • Vamos separar os termos em \(y\):

    \[y^{2} + 4 y\]

  • Completando o quadrado, isto é igual a:

    \[\left(y + 2\right)^{2} - 4\]

  • Agora, somamos estas duas expressões (mais o termo independente da equação original).

    O resultado é uma equação equivalente à original:

    \[\left(x + 1\right)^{2} + \left(y + 2\right)^{2} - 9 = 0\]

  • Jogando o termo independente para o lado direito, chegamos à forma canônica da equação do círculo:

    \[\left(x + 1\right)^{2} + \left(y + 2\right)^{2} = 9\]

As respostas para todos os itens são:

\[ \begin{array}{r|lll} & \textbf{Geral} & \qquad & \textbf{Canônica} \\ \hline 1 & x^{2} + 2 x + y^{2} + 4 y - 4 = 0 & & \left(x + 1\right)^{2} + \left(y + 2\right)^{2} = 9 \\ 2 & x^{2} + 2 x + y^{2} + 4 y + 4 = 0 & & \left(x + 1\right)^{2} + \left(y + 2\right)^{2} = 1 \\ 3 & x^{2} - 4 x + y^{2} - 4 y - 1 = 0 & & \left(x - 2\right)^{2} + \left(y - 2\right)^{2} = 9 \\ 4 & x^{2} - 2 x + y^{2} + 2 y + 1 = 0 & & \left(x - 1\right)^{2} + \left(y + 1\right)^{2} = 1 \\ 5 & x^{2} - 4 x + y^{2} - 2 y + 1 = 0 & & \left(x - 2\right)^{2} + \left(y - 1\right)^{2} = 4 \\ 6 & x^{2} - 2 x + y^{2} - 2 y - 2 = 0 & & \left(x - 1\right)^{2} + \left(y - 1\right)^{2} = 4 \\ 7 & x^{2} + 4 x + y^{2} + 4 y - 1 = 0 & & \left(x + 2\right)^{2} + \left(y + 2\right)^{2} = 9 \\ 8 & x^{2} - 4 x + y^{2} - 4 y - 8 = 0 & & \left(x - 2\right)^{2} + \left(y - 2\right)^{2} = 16 \\ 9 & x^{2} + 4 x + y^{2} - 4 y + 7 = 0 & & \left(x + 2\right)^{2} + \left(y - 2\right)^{2} = 1 \\ 10 & x^{2} + 2 x + y^{2} - 4 y - 4 = 0 & & \left(x + 1\right)^{2} + \left(y - 2\right)^{2} = 9 \\ 11 & x^{2} - 4 x + y^{2} - 2 y - 11 = 0 & & \left(x - 2\right)^{2} + \left(y - 1\right)^{2} = 16 \\ 12 & x^{2} - 4 x + y^{2} + 4 y + 7 = 0 & & \left(x - 2\right)^{2} + \left(y + 2\right)^{2} = 1 \\ 13 & x^{2} + 4 x + y^{2} - 2 y + 1 = 0 & & \left(x + 2\right)^{2} + \left(y - 1\right)^{2} = 4 \\ 14 & x^{2} - 2 x + y^{2} - 2 y - 7 = 0 & & \left(x - 1\right)^{2} + \left(y - 1\right)^{2} = 9 \\ 15 & x^{2} + 2 x + y^{2} - 2 y - 7 = 0 & & \left(x + 1\right)^{2} + \left(y - 1\right)^{2} = 9 \\ 16 & x^{2} - 2 x + y^{2} + 4 y + 1 = 0 & & \left(x - 1\right)^{2} + \left(y + 2\right)^{2} = 4 \\ 17 & x^{2} - 2 x + y^{2} - 2 y - 14 = 0 & & \left(x - 1\right)^{2} + \left(y - 1\right)^{2} = 16 \\ 18 & x^{2} - 2 x + y^{2} + 4 y - 4 = 0 & & \left(x - 1\right)^{2} + \left(y + 2\right)^{2} = 9 \\ 19 & x^{2} - 2 x + y^{2} - 4 y + 4 = 0 & & \left(x - 1\right)^{2} + \left(y - 2\right)^{2} = 1 \\ 20 & x^{2} + 2 x + y^{2} + 2 y - 2 = 0 & & \left(x + 1\right)^{2} + \left(y + 1\right)^{2} = 4 \\ 21 & x^{2} - 4 x + y^{2} - 2 y - 4 = 0 & & \left(x - 2\right)^{2} + \left(y - 1\right)^{2} = 9 \\ 22 & x^{2} + 2 x + y^{2} + 2 y - 7 = 0 & & \left(x + 1\right)^{2} + \left(y + 1\right)^{2} = 9 \\ 23 & x^{2} - 4 x + y^{2} + 2 y - 4 = 0 & & \left(x - 2\right)^{2} + \left(y + 1\right)^{2} = 9 \\ 24 & x^{2} + 2 x + y^{2} - 2 y - 2 = 0 & & \left(x + 1\right)^{2} + \left(y - 1\right)^{2} = 4 \\ 25 & x^{2} + 4 x + y^{2} + 2 y - 4 = 0 & & \left(x + 2\right)^{2} + \left(y + 1\right)^{2} = 9 \\ 26 & x^{2} + 4 x + y^{2} - 4 y - 1 = 0 & & \left(x + 2\right)^{2} + \left(y - 2\right)^{2} = 9 \\ 27 & x^{2} - 4 x + y^{2} - 4 y + 7 = 0 & & \left(x - 2\right)^{2} + \left(y - 2\right)^{2} = 1 \\ 28 & x^{2} - 4 x + y^{2} + 4 y - 1 = 0 & & \left(x - 2\right)^{2} + \left(y + 2\right)^{2} = 9 \\ 29 & x^{2} + 4 x + y^{2} - 2 y - 11 = 0 & & \left(x + 2\right)^{2} + \left(y - 1\right)^{2} = 16 \\ 30 & x^{2} - 2 x + y^{2} - 2 y + 1 = 0 & & \left(x - 1\right)^{2} + \left(y - 1\right)^{2} = 1 \\ 31 & x^{2} + 2 x + y^{2} + 2 y - 14 = 0 & & \left(x + 1\right)^{2} + \left(y + 1\right)^{2} = 16 \\ 32 & x^{2} + 4 x + y^{2} + 2 y + 4 = 0 & & \left(x + 2\right)^{2} + \left(y + 1\right)^{2} = 1 \\ 33 & x^{2} + 4 x + y^{2} - 2 y - 4 = 0 & & \left(x + 2\right)^{2} + \left(y - 1\right)^{2} = 9 \\ 34 & x^{2} + 4 x + y^{2} + 4 y - 8 = 0 & & \left(x + 2\right)^{2} + \left(y + 2\right)^{2} = 16 \\ 35 & x^{2} + 2 x + y^{2} - 2 y + 1 = 0 & & \left(x + 1\right)^{2} + \left(y - 1\right)^{2} = 1 \\ 36 & x^{2} + 2 x + y^{2} - 4 y - 11 = 0 & & \left(x + 1\right)^{2} + \left(y - 2\right)^{2} = 16 \\ 37 & x^{2} - 4 x + y^{2} - 4 y + 4 = 0 & & \left(x - 2\right)^{2} + \left(y - 2\right)^{2} = 4 \\ 38 & x^{2} - 4 x + y^{2} + 2 y + 1 = 0 & & \left(x - 2\right)^{2} + \left(y + 1\right)^{2} = 4 \\ 39 & x^{2} - 4 x + y^{2} + 4 y - 8 = 0 & & \left(x - 2\right)^{2} + \left(y + 2\right)^{2} = 16 \\ 40 & x^{2} - 2 x + y^{2} + 2 y - 7 = 0 & & \left(x - 1\right)^{2} + \left(y + 1\right)^{2} = 9 \\ 41 & x^{2} - 2 x + y^{2} + 2 y - 14 = 0 & & \left(x - 1\right)^{2} + \left(y + 1\right)^{2} = 16 \\ 42 & x^{2} - 2 x + y^{2} - 4 y - 4 = 0 & & \left(x - 1\right)^{2} + \left(y - 2\right)^{2} = 9 \\ \hline \end{array} \]

2.2 Nariz

  • O nariz é a elipse de eixo maior horizontal com as coordenadas do centro, valores de \(a\) e de \(c\) dados abaixo (veja o seu número \(n\) nesta lista).

  • Ache a equação canônica desta elipse.

    1. \(\displaystyle \quad \text{Centro} = \left( -1; \ -2\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)

    2. \(\displaystyle \quad \text{Centro} = \left( -1; \ -2\right)\ ,\quad a = \frac{11}{100}\ ,\quad c = \frac{1}{10}\)

    3. \(\displaystyle \quad \text{Centro} = \left( 2; \ 2\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)

    4. \(\displaystyle \quad \text{Centro} = \left( 1; \ -1\right)\ ,\quad a = \frac{11}{100}\ ,\quad c = \frac{1}{10}\)

    5. \(\displaystyle \quad \text{Centro} = \left( 2; \ 1\right)\ ,\quad a = \frac{11}{50}\ ,\quad c = \frac{1}{5}\)

    6. \(\displaystyle \quad \text{Centro} = \left( 1; \ 1\right)\ ,\quad a = \frac{11}{50}\ ,\quad c = \frac{1}{5}\)

    7. \(\displaystyle \quad \text{Centro} = \left( -2; \ -2\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)

    8. \(\displaystyle \quad \text{Centro} = \left( 2; \ 2\right)\ ,\quad a = \frac{11}{25}\ ,\quad c = \frac{2}{5}\)

    9. \(\displaystyle \quad \text{Centro} = \left( -2; \ 2\right)\ ,\quad a = \frac{11}{100}\ ,\quad c = \frac{1}{10}\)

    10. \(\displaystyle \quad \text{Centro} = \left( -1; \ 2\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)

    11. \(\displaystyle \quad \text{Centro} = \left( 2; \ 1\right)\ ,\quad a = \frac{11}{25}\ ,\quad c = \frac{2}{5}\)

    12. \(\displaystyle \quad \text{Centro} = \left( 2; \ -2\right)\ ,\quad a = \frac{11}{100}\ ,\quad c = \frac{1}{10}\)

    13. \(\displaystyle \quad \text{Centro} = \left( -2; \ 1\right)\ ,\quad a = \frac{11}{50}\ ,\quad c = \frac{1}{5}\)

    14. \(\displaystyle \quad \text{Centro} = \left( 1; \ 1\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)

    15. \(\displaystyle \quad \text{Centro} = \left( -1; \ 1\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)

    16. \(\displaystyle \quad \text{Centro} = \left( 1; \ -2\right)\ ,\quad a = \frac{11}{50}\ ,\quad c = \frac{1}{5}\)

    17. \(\displaystyle \quad \text{Centro} = \left( 1; \ 1\right)\ ,\quad a = \frac{11}{25}\ ,\quad c = \frac{2}{5}\)

    18. \(\displaystyle \quad \text{Centro} = \left( 1; \ -2\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)

    19. \(\displaystyle \quad \text{Centro} = \left( 1; \ 2\right)\ ,\quad a = \frac{11}{100}\ ,\quad c = \frac{1}{10}\)

    20. \(\displaystyle \quad \text{Centro} = \left( -1; \ -1\right)\ ,\quad a = \frac{11}{50}\ ,\quad c = \frac{1}{5}\)

    21. \(\displaystyle \quad \text{Centro} = \left( 2; \ 1\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)

    22. \(\displaystyle \quad \text{Centro} = \left( -1; \ -1\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)

    23. \(\displaystyle \quad \text{Centro} = \left( 2; \ -1\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)

    24. \(\displaystyle \quad \text{Centro} = \left( -1; \ 1\right)\ ,\quad a = \frac{11}{50}\ ,\quad c = \frac{1}{5}\)

    25. \(\displaystyle \quad \text{Centro} = \left( -2; \ -1\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)

    26. \(\displaystyle \quad \text{Centro} = \left( -2; \ 2\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)

    27. \(\displaystyle \quad \text{Centro} = \left( 2; \ 2\right)\ ,\quad a = \frac{11}{100}\ ,\quad c = \frac{1}{10}\)

    28. \(\displaystyle \quad \text{Centro} = \left( 2; \ -2\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)

    29. \(\displaystyle \quad \text{Centro} = \left( -2; \ 1\right)\ ,\quad a = \frac{11}{25}\ ,\quad c = \frac{2}{5}\)

    30. \(\displaystyle \quad \text{Centro} = \left( 1; \ 1\right)\ ,\quad a = \frac{11}{100}\ ,\quad c = \frac{1}{10}\)

    31. \(\displaystyle \quad \text{Centro} = \left( -1; \ -1\right)\ ,\quad a = \frac{11}{25}\ ,\quad c = \frac{2}{5}\)

    32. \(\displaystyle \quad \text{Centro} = \left( -2; \ -1\right)\ ,\quad a = \frac{11}{100}\ ,\quad c = \frac{1}{10}\)

    33. \(\displaystyle \quad \text{Centro} = \left( -2; \ 1\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)

    34. \(\displaystyle \quad \text{Centro} = \left( -2; \ -2\right)\ ,\quad a = \frac{11}{25}\ ,\quad c = \frac{2}{5}\)

    35. \(\displaystyle \quad \text{Centro} = \left( -1; \ 1\right)\ ,\quad a = \frac{11}{100}\ ,\quad c = \frac{1}{10}\)

    36. \(\displaystyle \quad \text{Centro} = \left( -1; \ 2\right)\ ,\quad a = \frac{11}{25}\ ,\quad c = \frac{2}{5}\)

    37. \(\displaystyle \quad \text{Centro} = \left( 2; \ 2\right)\ ,\quad a = \frac{11}{50}\ ,\quad c = \frac{1}{5}\)

    38. \(\displaystyle \quad \text{Centro} = \left( 2; \ -1\right)\ ,\quad a = \frac{11}{50}\ ,\quad c = \frac{1}{5}\)

    39. \(\displaystyle \quad \text{Centro} = \left( 2; \ -2\right)\ ,\quad a = \frac{11}{25}\ ,\quad c = \frac{2}{5}\)

    40. \(\displaystyle \quad \text{Centro} = \left( 1; \ -1\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)

    41. \(\displaystyle \quad \text{Centro} = \left( 1; \ -1\right)\ ,\quad a = \frac{11}{25}\ ,\quad c = \frac{2}{5}\)

    42. \(\displaystyle \quad \text{Centro} = \left( 1; \ 2\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)

  • Você percebeu que o centro da elipse do nariz é exatamente o centro do círculo do rosto?

  • Vamos resolver o item \(1\). Os passos são os mesmos para todos os itens; só mudam os valores.

  • A equação canônica de uma elipse com eixo maior horizontal é da forma

    \[ \frac{(x - h)^2}{a^2} + \frac{(y - k)^2}{b^2} = 1 \]

    onde \((h, k)\) é o centro, que foi dado.

  • O valor de \(a\) foi dado.

  • O valor de \(b\) pode ser calculado como \(b = \sqrt{a^2 - c^2}\), com \(c\) dado.

  • Usando os valores do item \(1\):

    • Centro \({} = \left( -1; \ -2\right)\)

    • \(a = \frac{33}{100}\)

    • \(c = \frac{3}{10}\)

    • Calculamos \(b = \frac{3 \sqrt{21}}{100}\)

    • E a equação fica

      \[\frac{\left(x + 1\right)^{2}}{\frac{1089}{10000}} + \frac{\left(y + 2\right)^{2}}{\frac{189}{10000}} = 1\]

As respostas para todos os itens são:

\[ \begin{array}{r|l} \hline 1 & \displaystyle \frac{\left(x + 1\right)^{2}}{\frac{1089}{10000}} + \frac{\left(y + 2\right)^{2}}{\frac{189}{10000}} = 1 \\ 2 & \displaystyle \frac{\left(x + 1\right)^{2}}{\frac{121}{10000}} + \frac{\left(y + 2\right)^{2}}{\frac{21}{10000}} = 1 \\ 3 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{1089}{10000}} + \frac{\left(y - 2\right)^{2}}{\frac{189}{10000}} = 1 \\ 4 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{121}{10000}} + \frac{\left(y + 1\right)^{2}}{\frac{21}{10000}} = 1 \\ 5 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{121}{2500}} + \frac{\left(y - 1\right)^{2}}{\frac{21}{2500}} = 1 \\ 6 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{121}{2500}} + \frac{\left(y - 1\right)^{2}}{\frac{21}{2500}} = 1 \\ 7 & \displaystyle \frac{\left(x + 2\right)^{2}}{\frac{1089}{10000}} + \frac{\left(y + 2\right)^{2}}{\frac{189}{10000}} = 1 \\ 8 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{121}{625}} + \frac{\left(y - 2\right)^{2}}{\frac{21}{625}} = 1 \\ 9 & \displaystyle \frac{\left(x + 2\right)^{2}}{\frac{121}{10000}} + \frac{\left(y - 2\right)^{2}}{\frac{21}{10000}} = 1 \\ 10 & \displaystyle \frac{\left(x + 1\right)^{2}}{\frac{1089}{10000}} + \frac{\left(y - 2\right)^{2}}{\frac{189}{10000}} = 1 \\ 11 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{121}{625}} + \frac{\left(y - 1\right)^{2}}{\frac{21}{625}} = 1 \\ 12 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{121}{10000}} + \frac{\left(y + 2\right)^{2}}{\frac{21}{10000}} = 1 \\ 13 & \displaystyle \frac{\left(x + 2\right)^{2}}{\frac{121}{2500}} + \frac{\left(y - 1\right)^{2}}{\frac{21}{2500}} = 1 \\ 14 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{1089}{10000}} + \frac{\left(y - 1\right)^{2}}{\frac{189}{10000}} = 1 \\ 15 & \displaystyle \frac{\left(x + 1\right)^{2}}{\frac{1089}{10000}} + \frac{\left(y - 1\right)^{2}}{\frac{189}{10000}} = 1 \\ 16 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{121}{2500}} + \frac{\left(y + 2\right)^{2}}{\frac{21}{2500}} = 1 \\ 17 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{121}{625}} + \frac{\left(y - 1\right)^{2}}{\frac{21}{625}} = 1 \\ 18 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{1089}{10000}} + \frac{\left(y + 2\right)^{2}}{\frac{189}{10000}} = 1 \\ 19 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{121}{10000}} + \frac{\left(y - 2\right)^{2}}{\frac{21}{10000}} = 1 \\ 20 & \displaystyle \frac{\left(x + 1\right)^{2}}{\frac{121}{2500}} + \frac{\left(y + 1\right)^{2}}{\frac{21}{2500}} = 1 \\ 21 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{1089}{10000}} + \frac{\left(y - 1\right)^{2}}{\frac{189}{10000}} = 1 \\ 22 & \displaystyle \frac{\left(x + 1\right)^{2}}{\frac{1089}{10000}} + \frac{\left(y + 1\right)^{2}}{\frac{189}{10000}} = 1 \\ 23 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{1089}{10000}} + \frac{\left(y + 1\right)^{2}}{\frac{189}{10000}} = 1 \\ 24 & \displaystyle \frac{\left(x + 1\right)^{2}}{\frac{121}{2500}} + \frac{\left(y - 1\right)^{2}}{\frac{21}{2500}} = 1 \\ 25 & \displaystyle \frac{\left(x + 2\right)^{2}}{\frac{1089}{10000}} + \frac{\left(y + 1\right)^{2}}{\frac{189}{10000}} = 1 \\ 26 & \displaystyle \frac{\left(x + 2\right)^{2}}{\frac{1089}{10000}} + \frac{\left(y - 2\right)^{2}}{\frac{189}{10000}} = 1 \\ 27 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{121}{10000}} + \frac{\left(y - 2\right)^{2}}{\frac{21}{10000}} = 1 \\ 28 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{1089}{10000}} + \frac{\left(y + 2\right)^{2}}{\frac{189}{10000}} = 1 \\ 29 & \displaystyle \frac{\left(x + 2\right)^{2}}{\frac{121}{625}} + \frac{\left(y - 1\right)^{2}}{\frac{21}{625}} = 1 \\ 30 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{121}{10000}} + \frac{\left(y - 1\right)^{2}}{\frac{21}{10000}} = 1 \\ 31 & \displaystyle \frac{\left(x + 1\right)^{2}}{\frac{121}{625}} + \frac{\left(y + 1\right)^{2}}{\frac{21}{625}} = 1 \\ 32 & \displaystyle \frac{\left(x + 2\right)^{2}}{\frac{121}{10000}} + \frac{\left(y + 1\right)^{2}}{\frac{21}{10000}} = 1 \\ 33 & \displaystyle \frac{\left(x + 2\right)^{2}}{\frac{1089}{10000}} + \frac{\left(y - 1\right)^{2}}{\frac{189}{10000}} = 1 \\ 34 & \displaystyle \frac{\left(x + 2\right)^{2}}{\frac{121}{625}} + \frac{\left(y + 2\right)^{2}}{\frac{21}{625}} = 1 \\ 35 & \displaystyle \frac{\left(x + 1\right)^{2}}{\frac{121}{10000}} + \frac{\left(y - 1\right)^{2}}{\frac{21}{10000}} = 1 \\ 36 & \displaystyle \frac{\left(x + 1\right)^{2}}{\frac{121}{625}} + \frac{\left(y - 2\right)^{2}}{\frac{21}{625}} = 1 \\ 37 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{121}{2500}} + \frac{\left(y - 2\right)^{2}}{\frac{21}{2500}} = 1 \\ 38 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{121}{2500}} + \frac{\left(y + 1\right)^{2}}{\frac{21}{2500}} = 1 \\ 39 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{121}{625}} + \frac{\left(y + 2\right)^{2}}{\frac{21}{625}} = 1 \\ 40 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{1089}{10000}} + \frac{\left(y + 1\right)^{2}}{\frac{189}{10000}} = 1 \\ 41 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{121}{625}} + \frac{\left(y + 1\right)^{2}}{\frac{21}{625}} = 1 \\ 42 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{1089}{10000}} + \frac{\left(y - 2\right)^{2}}{\frac{189}{10000}} = 1 \\ \hline \end{array} \]

2.3 Olhos

  • Os centros dos olhos são os focos da elipse com equação geral dada abaixo (veja o seu número \(n\) nesta lista).

  • Ache a equação canônica e as coordenadas dos focos desta elipse.

    1. \(\displaystyle \quad x^{2} + 2 x + \frac{121 y^{2}}{21} + \frac{242 y}{15} + \frac{2297}{240} = 0\)

    2. \(\displaystyle \quad x^{2} + 2 x + \frac{121 y^{2}}{21} + \frac{726 y}{35} + \frac{2169}{112} = 0\)

    3. \(\displaystyle \quad x^{2} - 4 x + \frac{121 y^{2}}{21} - \frac{3146 y}{105} + \frac{67583}{1680} = 0\)

    4. \(\displaystyle \quad x^{2} - 2 x + \frac{121 y^{2}}{21} + \frac{968 y}{105} + \frac{7367}{1680} = 0\)

    5. \(\displaystyle \quad x^{2} - 4 x + \frac{121 y^{2}}{21} - \frac{242 y}{15} + \frac{169}{12} = 0\)

    6. \(\displaystyle \quad x^{2} - 2 x + \frac{121 y^{2}}{21} - \frac{242 y}{15} + \frac{133}{12} = 0\)

    7. \(\displaystyle \quad x^{2} + 4 x + \frac{121 y^{2}}{21} + \frac{242 y}{15} + \frac{3017}{240} = 0\)

    8. \(\displaystyle \quad x^{2} - 4 x + \frac{121 y^{2}}{21} - \frac{484 y}{15} + \frac{133}{3} = 0\)

    9. \(\displaystyle \quad x^{2} + 4 x + \frac{121 y^{2}}{21} - \frac{2662 y}{105} + \frac{53063}{1680} = 0\)

    10. \(\displaystyle \quad x^{2} + 2 x + \frac{121 y^{2}}{21} - \frac{3146 y}{105} + \frac{62543}{1680} = 0\)

    11. \(\displaystyle \quad x^{2} - 4 x + \frac{121 y^{2}}{21} - \frac{726 y}{35} + \frac{624}{35} = 0\)

    12. \(\displaystyle \quad x^{2} - 4 x + \frac{121 y^{2}}{21} + \frac{726 y}{35} + \frac{2505}{112} = 0\)

    13. \(\displaystyle \quad x^{2} + 4 x + \frac{121 y^{2}}{21} - \frac{242 y}{15} + \frac{169}{12} = 0\)

    14. \(\displaystyle \quad x^{2} - 2 x + \frac{121 y^{2}}{21} - \frac{1936 y}{105} + \frac{21887}{1680} = 0\)

    15. \(\displaystyle \quad x^{2} + 2 x + \frac{121 y^{2}}{21} - \frac{1936 y}{105} + \frac{21887}{1680} = 0\)

    16. \(\displaystyle \quad x^{2} - 2 x + \frac{121 y^{2}}{21} + \frac{1936 y}{105} + \frac{6107}{420} = 0\)

    17. \(\displaystyle \quad x^{2} - 2 x + \frac{121 y^{2}}{21} - \frac{726 y}{35} + \frac{519}{35} = 0\)

    18. \(\displaystyle \quad x^{2} - 2 x + \frac{121 y^{2}}{21} + \frac{242 y}{15} + \frac{2297}{240} = 0\)

    19. \(\displaystyle \quad x^{2} - 2 x + \frac{121 y^{2}}{21} - \frac{2662 y}{105} + \frac{48023}{1680} = 0\)

    20. \(\displaystyle \quad x^{2} + 2 x + \frac{121 y^{2}}{21} + \frac{242 y}{35} + \frac{261}{140} = 0\)

    21. \(\displaystyle \quad x^{2} - 4 x + \frac{121 y^{2}}{21} - \frac{1936 y}{105} + \frac{26927}{1680} = 0\)

    22. \(\displaystyle \quad x^{2} + 2 x + \frac{121 y^{2}}{21} + \frac{484 y}{105} - \frac{269}{336} = 0\)

    23. \(\displaystyle \quad x^{2} - 4 x + \frac{121 y^{2}}{21} + \frac{484 y}{105} + \frac{739}{336} = 0\)

    24. \(\displaystyle \quad x^{2} + 2 x + \frac{121 y^{2}}{21} - \frac{242 y}{15} + \frac{133}{12} = 0\)

    25. \(\displaystyle \quad x^{2} + 4 x + \frac{121 y^{2}}{21} + \frac{484 y}{105} + \frac{739}{336} = 0\)

    26. \(\displaystyle \quad x^{2} + 4 x + \frac{121 y^{2}}{21} - \frac{3146 y}{105} + \frac{67583}{1680} = 0\)

    27. \(\displaystyle \quad x^{2} - 4 x + \frac{121 y^{2}}{21} - \frac{2662 y}{105} + \frac{53063}{1680} = 0\)

    28. \(\displaystyle \quad x^{2} - 4 x + \frac{121 y^{2}}{21} + \frac{242 y}{15} + \frac{3017}{240} = 0\)

    29. \(\displaystyle \quad x^{2} + 4 x + \frac{121 y^{2}}{21} - \frac{726 y}{35} + \frac{624}{35} = 0\)

    30. \(\displaystyle \quad x^{2} - 2 x + \frac{121 y^{2}}{21} - \frac{484 y}{35} + \frac{5037}{560} = 0\)

    31. \(\displaystyle \quad x^{2} + 2 x + \frac{121 y^{2}}{21} + \frac{242 y}{105} - \frac{379}{105} = 0\)

    32. \(\displaystyle \quad x^{2} + 4 x + \frac{121 y^{2}}{21} + \frac{968 y}{105} + \frac{12407}{1680} = 0\)

    33. \(\displaystyle \quad x^{2} + 4 x + \frac{121 y^{2}}{21} - \frac{1936 y}{105} + \frac{26927}{1680} = 0\)

    34. \(\displaystyle \quad x^{2} + 4 x + \frac{121 y^{2}}{21} + \frac{484 y}{35} + \frac{261}{35} = 0\)

    35. \(\displaystyle \quad x^{2} + 2 x + \frac{121 y^{2}}{21} - \frac{484 y}{35} + \frac{5037}{560} = 0\)

    36. \(\displaystyle \quad x^{2} + 2 x + \frac{121 y^{2}}{21} - \frac{484 y}{15} + \frac{124}{3} = 0\)

    37. \(\displaystyle \quad x^{2} - 4 x + \frac{121 y^{2}}{21} - \frac{968 y}{35} + \frac{5037}{140} = 0\)

    38. \(\displaystyle \quad x^{2} - 4 x + \frac{121 y^{2}}{21} + \frac{242 y}{35} + \frac{681}{140} = 0\)

    39. \(\displaystyle \quad x^{2} - 4 x + \frac{121 y^{2}}{21} + \frac{484 y}{35} + \frac{261}{35} = 0\)

    40. \(\displaystyle \quad x^{2} - 2 x + \frac{121 y^{2}}{21} + \frac{484 y}{105} - \frac{269}{336} = 0\)

    41. \(\displaystyle \quad x^{2} - 2 x + \frac{121 y^{2}}{21} + \frac{242 y}{105} - \frac{379}{105} = 0\)

    42. \(\displaystyle \quad x^{2} - 2 x + \frac{121 y^{2}}{21} - \frac{3146 y}{105} + \frac{62543}{1680} = 0\)

  • Vamos resolver o item \(1\). Os passos são os mesmos para todos os itens; só mudam os valores.

  • A equação é

    \[x^{2} + 2 x + \frac{121 y^{2}}{21} + \frac{242 y}{15} + \frac{2297}{240} = 0\]

  • Vamos separar os termos em \(x\):

    \[x^{2} + 2 x\]

  • Completando o quadrado, isto é igual a:

    \[\left(x + 1\right)^{2} - 1\]

  • Vamos separar os termos em \(y\):

    \[\frac{121 y^{2}}{21} + \frac{242 y}{15}\]

  • Completando o quadrado, isto é igual a:

    \[\frac{121 \left(y + \frac{7}{5}\right)^{2}}{21} - \frac{847}{75}\]

  • Agora, somamos estas duas expressões (mais o termo independente da equação original).

    O resultado é uma equação equivalente à original:

    \[\left(x + 1\right)^{2} + \frac{121 \left(y + \frac{7}{5}\right)^{2}}{21} - \frac{1089}{400} = 0\]

  • Jogando o termo independente para o lado direito, e dividindo tudo para o lado direito ficar igual a \(1\), chegamos à forma canônica da equação da elipse:

    \[\frac{\left(x + 1\right)^{2}}{\frac{1089}{400}} + \frac{\left(y + \frac{7}{5}\right)^{2}}{\frac{189}{400}} = 1\]

As respostas para todos os itens são:

\[ \begin{array}{r|l}\hline 1 & \displaystyle \frac{\left(x + 1\right)^{2}}{\frac{1089}{400}} + \frac{\left(y + \frac{7}{5}\right)^{2}}{\frac{189}{400}} = 1 \\ 2 & \displaystyle \frac{\left(x + 1\right)^{2}}{\frac{121}{400}} + \frac{\left(y + \frac{9}{5}\right)^{2}}{\frac{21}{400}} = 1 \\ 3 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{1089}{400}} + \frac{\left(y - \frac{13}{5}\right)^{2}}{\frac{189}{400}} = 1 \\ 4 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{121}{400}} + \frac{\left(y + \frac{4}{5}\right)^{2}}{\frac{21}{400}} = 1 \\ 5 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{121}{100}} + \frac{\left(y - \frac{7}{5}\right)^{2}}{\frac{21}{100}} = 1 \\ 6 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{121}{100}} + \frac{\left(y - \frac{7}{5}\right)^{2}}{\frac{21}{100}} = 1 \\ 7 & \displaystyle \frac{\left(x + 2\right)^{2}}{\frac{1089}{400}} + \frac{\left(y + \frac{7}{5}\right)^{2}}{\frac{189}{400}} = 1 \\ 8 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{121}{25}} + \frac{\left(y - \frac{14}{5}\right)^{2}}{\frac{21}{25}} = 1 \\ 9 & \displaystyle \frac{\left(x + 2\right)^{2}}{\frac{121}{400}} + \frac{\left(y - \frac{11}{5}\right)^{2}}{\frac{21}{400}} = 1 \\ 10 & \displaystyle \frac{\left(x + 1\right)^{2}}{\frac{1089}{400}} + \frac{\left(y - \frac{13}{5}\right)^{2}}{\frac{189}{400}} = 1 \\ 11 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{121}{25}} + \frac{\left(y - \frac{9}{5}\right)^{2}}{\frac{21}{25}} = 1 \\ 12 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{121}{400}} + \frac{\left(y + \frac{9}{5}\right)^{2}}{\frac{21}{400}} = 1 \\ 13 & \displaystyle \frac{\left(x + 2\right)^{2}}{\frac{121}{100}} + \frac{\left(y - \frac{7}{5}\right)^{2}}{\frac{21}{100}} = 1 \\ 14 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{1089}{400}} + \frac{\left(y - \frac{8}{5}\right)^{2}}{\frac{189}{400}} = 1 \\ 15 & \displaystyle \frac{\left(x + 1\right)^{2}}{\frac{1089}{400}} + \frac{\left(y - \frac{8}{5}\right)^{2}}{\frac{189}{400}} = 1 \\ 16 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{121}{100}} + \frac{\left(y + \frac{8}{5}\right)^{2}}{\frac{21}{100}} = 1 \\ 17 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{121}{25}} + \frac{\left(y - \frac{9}{5}\right)^{2}}{\frac{21}{25}} = 1 \\ 18 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{1089}{400}} + \frac{\left(y + \frac{7}{5}\right)^{2}}{\frac{189}{400}} = 1 \\ 19 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{121}{400}} + \frac{\left(y - \frac{11}{5}\right)^{2}}{\frac{21}{400}} = 1 \\ 20 & \displaystyle \frac{\left(x + 1\right)^{2}}{\frac{121}{100}} + \frac{\left(y + \frac{3}{5}\right)^{2}}{\frac{21}{100}} = 1 \\ 21 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{1089}{400}} + \frac{\left(y - \frac{8}{5}\right)^{2}}{\frac{189}{400}} = 1 \\ 22 & \displaystyle \frac{\left(x + 1\right)^{2}}{\frac{1089}{400}} + \frac{\left(y + \frac{2}{5}\right)^{2}}{\frac{189}{400}} = 1 \\ 23 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{1089}{400}} + \frac{\left(y + \frac{2}{5}\right)^{2}}{\frac{189}{400}} = 1 \\ 24 & \displaystyle \frac{\left(x + 1\right)^{2}}{\frac{121}{100}} + \frac{\left(y - \frac{7}{5}\right)^{2}}{\frac{21}{100}} = 1 \\ 25 & \displaystyle \frac{\left(x + 2\right)^{2}}{\frac{1089}{400}} + \frac{\left(y + \frac{2}{5}\right)^{2}}{\frac{189}{400}} = 1 \\ 26 & \displaystyle \frac{\left(x + 2\right)^{2}}{\frac{1089}{400}} + \frac{\left(y - \frac{13}{5}\right)^{2}}{\frac{189}{400}} = 1 \\ 27 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{121}{400}} + \frac{\left(y - \frac{11}{5}\right)^{2}}{\frac{21}{400}} = 1 \\ 28 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{1089}{400}} + \frac{\left(y + \frac{7}{5}\right)^{2}}{\frac{189}{400}} = 1 \\ 29 & \displaystyle \frac{\left(x + 2\right)^{2}}{\frac{121}{25}} + \frac{\left(y - \frac{9}{5}\right)^{2}}{\frac{21}{25}} = 1 \\ 30 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{121}{400}} + \frac{\left(y - \frac{6}{5}\right)^{2}}{\frac{21}{400}} = 1 \\ 31 & \displaystyle \frac{\left(x + 1\right)^{2}}{\frac{121}{25}} + \frac{\left(y + \frac{1}{5}\right)^{2}}{\frac{21}{25}} = 1 \\ 32 & \displaystyle \frac{\left(x + 2\right)^{2}}{\frac{121}{400}} + \frac{\left(y + \frac{4}{5}\right)^{2}}{\frac{21}{400}} = 1 \\ 33 & \displaystyle \frac{\left(x + 2\right)^{2}}{\frac{1089}{400}} + \frac{\left(y - \frac{8}{5}\right)^{2}}{\frac{189}{400}} = 1 \\ 34 & \displaystyle \frac{\left(x + 2\right)^{2}}{\frac{121}{25}} + \frac{\left(y + \frac{6}{5}\right)^{2}}{\frac{21}{25}} = 1 \\ 35 & \displaystyle \frac{\left(x + 1\right)^{2}}{\frac{121}{400}} + \frac{\left(y - \frac{6}{5}\right)^{2}}{\frac{21}{400}} = 1 \\ 36 & \displaystyle \frac{\left(x + 1\right)^{2}}{\frac{121}{25}} + \frac{\left(y - \frac{14}{5}\right)^{2}}{\frac{21}{25}} = 1 \\ 37 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{121}{100}} + \frac{\left(y - \frac{12}{5}\right)^{2}}{\frac{21}{100}} = 1 \\ 38 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{121}{100}} + \frac{\left(y + \frac{3}{5}\right)^{2}}{\frac{21}{100}} = 1 \\ 39 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{121}{25}} + \frac{\left(y + \frac{6}{5}\right)^{2}}{\frac{21}{25}} = 1 \\ 40 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{1089}{400}} + \frac{\left(y + \frac{2}{5}\right)^{2}}{\frac{189}{400}} = 1 \\ 41 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{121}{25}} + \frac{\left(y + \frac{1}{5}\right)^{2}}{\frac{21}{25}} = 1 \\ 42 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{1089}{400}} + \frac{\left(y - \frac{13}{5}\right)^{2}}{\frac{189}{400}} = 1 \\ \hline \end{array} \]

  • Para achar os focos, lembre-se de que, para uma elipse com eixo maior horizontal, com centro em \((h, k)\), os focos são

    \[ \begin{align} F_1 &= (h - c, k) \\ F_2 &= (h + c, k) \end{align} \]

    onde \(c\) é a distância focal, que pode ser calculada como

    \[ c = \sqrt{a^2 - b^2} \]

  • Para o item \(1\)

    \[ \begin{align} h &= -1 \\ k &= -7/5 \\ c &= \sqrt{1089/400 - 189/400} = 3/2 \end{align} \]

  • Os focos são

    \[ \left( - \frac{5}{2}; \ - \frac{7}{5}\right)\quad\text{e}\quad\left( \frac{1}{2}; \ - \frac{7}{5}\right) \]

As respostas para todos os itens são:

\[ \begin{array}{r|ll}\hline 1 & \displaystyle \left( - \frac{5}{2}; \ - \frac{7}{5}\right) & \displaystyle \left( \frac{1}{2}; \ - \frac{7}{5}\right) \\ 2 & \displaystyle \left( - \frac{3}{2}; \ - \frac{9}{5}\right) & \displaystyle \left( - \frac{1}{2}; \ - \frac{9}{5}\right) \\ 3 & \displaystyle \left( \frac{1}{2}; \ \frac{13}{5}\right) & \displaystyle \left( \frac{7}{2}; \ \frac{13}{5}\right) \\ 4 & \displaystyle \left( \frac{1}{2}; \ - \frac{4}{5}\right) & \displaystyle \left( \frac{3}{2}; \ - \frac{4}{5}\right) \\ 5 & \displaystyle \left( 1; \ \frac{7}{5}\right) & \displaystyle \left( 3; \ \frac{7}{5}\right) \\ 6 & \displaystyle \left( 0; \ \frac{7}{5}\right) & \displaystyle \left( 2; \ \frac{7}{5}\right) \\ 7 & \displaystyle \left( - \frac{7}{2}; \ - \frac{7}{5}\right) & \displaystyle \left( - \frac{1}{2}; \ - \frac{7}{5}\right) \\ 8 & \displaystyle \left( 0; \ \frac{14}{5}\right) & \displaystyle \left( 4; \ \frac{14}{5}\right) \\ 9 & \displaystyle \left( - \frac{5}{2}; \ \frac{11}{5}\right) & \displaystyle \left( - \frac{3}{2}; \ \frac{11}{5}\right) \\ 10 & \displaystyle \left( - \frac{5}{2}; \ \frac{13}{5}\right) & \displaystyle \left( \frac{1}{2}; \ \frac{13}{5}\right) \\ 11 & \displaystyle \left( 0; \ \frac{9}{5}\right) & \displaystyle \left( 4; \ \frac{9}{5}\right) \\ 12 & \displaystyle \left( \frac{3}{2}; \ - \frac{9}{5}\right) & \displaystyle \left( \frac{5}{2}; \ - \frac{9}{5}\right) \\ 13 & \displaystyle \left( -3; \ \frac{7}{5}\right) & \displaystyle \left( -1; \ \frac{7}{5}\right) \\ 14 & \displaystyle \left( - \frac{1}{2}; \ \frac{8}{5}\right) & \displaystyle \left( \frac{5}{2}; \ \frac{8}{5}\right) \\ 15 & \displaystyle \left( - \frac{5}{2}; \ \frac{8}{5}\right) & \displaystyle \left( \frac{1}{2}; \ \frac{8}{5}\right) \\ 16 & \displaystyle \left( 0; \ - \frac{8}{5}\right) & \displaystyle \left( 2; \ - \frac{8}{5}\right) \\ 17 & \displaystyle \left( -1; \ \frac{9}{5}\right) & \displaystyle \left( 3; \ \frac{9}{5}\right) \\ 18 & \displaystyle \left( - \frac{1}{2}; \ - \frac{7}{5}\right) & \displaystyle \left( \frac{5}{2}; \ - \frac{7}{5}\right) \\ 19 & \displaystyle \left( \frac{1}{2}; \ \frac{11}{5}\right) & \displaystyle \left( \frac{3}{2}; \ \frac{11}{5}\right) \\ 20 & \displaystyle \left( -2; \ - \frac{3}{5}\right) & \displaystyle \left( 0; \ - \frac{3}{5}\right) \\ 21 & \displaystyle \left( \frac{1}{2}; \ \frac{8}{5}\right) & \displaystyle \left( \frac{7}{2}; \ \frac{8}{5}\right) \\ 22 & \displaystyle \left( - \frac{5}{2}; \ - \frac{2}{5}\right) & \displaystyle \left( \frac{1}{2}; \ - \frac{2}{5}\right) \\ 23 & \displaystyle \left( \frac{1}{2}; \ - \frac{2}{5}\right) & \displaystyle \left( \frac{7}{2}; \ - \frac{2}{5}\right) \\ 24 & \displaystyle \left( -2; \ \frac{7}{5}\right) & \displaystyle \left( 0; \ \frac{7}{5}\right) \\ 25 & \displaystyle \left( - \frac{7}{2}; \ - \frac{2}{5}\right) & \displaystyle \left( - \frac{1}{2}; \ - \frac{2}{5}\right) \\ 26 & \displaystyle \left( - \frac{7}{2}; \ \frac{13}{5}\right) & \displaystyle \left( - \frac{1}{2}; \ \frac{13}{5}\right) \\ 27 & \displaystyle \left( \frac{3}{2}; \ \frac{11}{5}\right) & \displaystyle \left( \frac{5}{2}; \ \frac{11}{5}\right) \\ 28 & \displaystyle \left( \frac{1}{2}; \ - \frac{7}{5}\right) & \displaystyle \left( \frac{7}{2}; \ - \frac{7}{5}\right) \\ 29 & \displaystyle \left( -4; \ \frac{9}{5}\right) & \displaystyle \left( 0; \ \frac{9}{5}\right) \\ 30 & \displaystyle \left( \frac{1}{2}; \ \frac{6}{5}\right) & \displaystyle \left( \frac{3}{2}; \ \frac{6}{5}\right) \\ 31 & \displaystyle \left( -3; \ - \frac{1}{5}\right) & \displaystyle \left( 1; \ - \frac{1}{5}\right) \\ 32 & \displaystyle \left( - \frac{5}{2}; \ - \frac{4}{5}\right) & \displaystyle \left( - \frac{3}{2}; \ - \frac{4}{5}\right) \\ 33 & \displaystyle \left( - \frac{7}{2}; \ \frac{8}{5}\right) & \displaystyle \left( - \frac{1}{2}; \ \frac{8}{5}\right) \\ 34 & \displaystyle \left( -4; \ - \frac{6}{5}\right) & \displaystyle \left( 0; \ - \frac{6}{5}\right) \\ 35 & \displaystyle \left( - \frac{3}{2}; \ \frac{6}{5}\right) & \displaystyle \left( - \frac{1}{2}; \ \frac{6}{5}\right) \\ 36 & \displaystyle \left( -3; \ \frac{14}{5}\right) & \displaystyle \left( 1; \ \frac{14}{5}\right) \\ 37 & \displaystyle \left( 1; \ \frac{12}{5}\right) & \displaystyle \left( 3; \ \frac{12}{5}\right) \\ 38 & \displaystyle \left( 1; \ - \frac{3}{5}\right) & \displaystyle \left( 3; \ - \frac{3}{5}\right) \\ 39 & \displaystyle \left( 0; \ - \frac{6}{5}\right) & \displaystyle \left( 4; \ - \frac{6}{5}\right) \\ 40 & \displaystyle \left( - \frac{1}{2}; \ - \frac{2}{5}\right) & \displaystyle \left( \frac{5}{2}; \ - \frac{2}{5}\right) \\ 41 & \displaystyle \left( -1; \ - \frac{1}{5}\right) & \displaystyle \left( 3; \ - \frac{1}{5}\right) \\ 42 & \displaystyle \left( - \frac{1}{2}; \ \frac{13}{5}\right) & \displaystyle \left( \frac{5}{2}; \ \frac{13}{5}\right) \\ \hline \end{array} \]

  • Cada olho é uma elipse de eixo maior vertical com os valores de \(a\) e de \(c\) dados abaixo (veja o seu número \(n\) nesta lista).

  • Ache as equações gerais destas elipses.

    1. \(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)

    2. \(\displaystyle \quad a = \frac{1}{3}\ ,\quad c = \frac{1}{4}\)

    3. \(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)

    4. \(\displaystyle \quad a = \frac{1}{3}\ ,\quad c = \frac{1}{4}\)

    5. \(\displaystyle \quad a = \frac{2}{3}\ ,\quad c = \frac{1}{2}\)

    6. \(\displaystyle \quad a = \frac{2}{3}\ ,\quad c = \frac{1}{2}\)

    7. \(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)

    8. \(\displaystyle \quad a = \frac{4}{3}\ ,\quad c = 1\)

    9. \(\displaystyle \quad a = \frac{1}{3}\ ,\quad c = \frac{1}{4}\)

    10. \(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)

    11. \(\displaystyle \quad a = \frac{4}{3}\ ,\quad c = 1\)

    12. \(\displaystyle \quad a = \frac{1}{3}\ ,\quad c = \frac{1}{4}\)

    13. \(\displaystyle \quad a = \frac{2}{3}\ ,\quad c = \frac{1}{2}\)

    14. \(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)

    15. \(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)

    16. \(\displaystyle \quad a = \frac{2}{3}\ ,\quad c = \frac{1}{2}\)

    17. \(\displaystyle \quad a = \frac{4}{3}\ ,\quad c = 1\)

    18. \(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)

    19. \(\displaystyle \quad a = \frac{1}{3}\ ,\quad c = \frac{1}{4}\)

    20. \(\displaystyle \quad a = \frac{2}{3}\ ,\quad c = \frac{1}{2}\)

    21. \(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)

    22. \(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)

    23. \(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)

    24. \(\displaystyle \quad a = \frac{2}{3}\ ,\quad c = \frac{1}{2}\)

    25. \(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)

    26. \(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)

    27. \(\displaystyle \quad a = \frac{1}{3}\ ,\quad c = \frac{1}{4}\)

    28. \(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)

    29. \(\displaystyle \quad a = \frac{4}{3}\ ,\quad c = 1\)

    30. \(\displaystyle \quad a = \frac{1}{3}\ ,\quad c = \frac{1}{4}\)

    31. \(\displaystyle \quad a = \frac{4}{3}\ ,\quad c = 1\)

    32. \(\displaystyle \quad a = \frac{1}{3}\ ,\quad c = \frac{1}{4}\)

    33. \(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)

    34. \(\displaystyle \quad a = \frac{4}{3}\ ,\quad c = 1\)

    35. \(\displaystyle \quad a = \frac{1}{3}\ ,\quad c = \frac{1}{4}\)

    36. \(\displaystyle \quad a = \frac{4}{3}\ ,\quad c = 1\)

    37. \(\displaystyle \quad a = \frac{2}{3}\ ,\quad c = \frac{1}{2}\)

    38. \(\displaystyle \quad a = \frac{2}{3}\ ,\quad c = \frac{1}{2}\)

    39. \(\displaystyle \quad a = \frac{4}{3}\ ,\quad c = 1\)

    40. \(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)

    41. \(\displaystyle \quad a = \frac{4}{3}\ ,\quad c = 1\)

    42. \(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)

  • Vamos resolver o item \(1\). Os passos são os mesmos para todos os itens; só mudam os valores.

  • Temos, para cada olho:

    • O centro \((h, k)\), que é um dos focos da elipse do item anterior;

    • O valor de \(a\);

    • O valor de \(c\).

  • O mais prático é achar a equação canônica de cada olho, que é da forma

    \[ \frac{(x - h)^2}{b^2} + \frac{(y - k)^2}{a^2} = 1 \]

    onde \(b = \sqrt{a^2 - c^2}\).

  • Importante: como a elipse tem o eixo maior vertical, o denominador \(a^2\) aparece no termo em \(y\).

  • Uma vez achada a equação canônica, desenvolvemos os quadrados e a soma para achar a equação geral.

  • Para um olho:

    • Centro \((h, k) = \left( - \frac{5}{2}; \ - \frac{7}{5}\right)\)

    • \(a = 1\)

    • \(c = \frac{3}{4}\)

    • \(b = \frac{\sqrt{7}}{4}\)

    • Equação canônica \({}= \frac{\left(x + \frac{5}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y + \frac{7}{5}\right)^{2}}{1} = 1\)

    • Equação geral \({}= \frac{16 x^{2}}{7} + \frac{80 x}{7} + y^{2} + \frac{14 y}{5} + \frac{2668}{175} = 0\)

  • Para o outro olho:

    • Centro \((h, k) = \left( \frac{1}{2}; \ - \frac{7}{5}\right)\)

    • \(a = 1\)

    • \(c = \frac{3}{4}\)

    • \(b = \frac{\sqrt{7}}{4}\)

    • Equação canônica \({}= \frac{\left(x - \frac{1}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y + \frac{7}{5}\right)^{2}}{1} = 1\)

    • Equação geral \({}= \frac{16 x^{2}}{7} - \frac{16 x}{7} + y^{2} + \frac{14 y}{5} + \frac{268}{175} = 0\)

As respostas para todos os itens (equações canônicas e gerais do primeiro olho) são:

\[ \begin{array}{r|lll} \hline 1 & \displaystyle \frac{\left(x + \frac{5}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y + \frac{7}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} + \frac{80 x}{7} + y^{2} + \frac{14 y}{5} + \frac{2668}{175} = 0 \\ 2 & \displaystyle \frac{\left(x + \frac{3}{2}\right)^{2}}{\frac{7}{144}} + \frac{1}{\frac{1}{9}} \left(y + \frac{9}{5}\right)^{2} = 1 & \qquad & \displaystyle \frac{144 x^{2}}{7} + \frac{432 x}{7} + 9 y^{2} + \frac{162 y}{5} + \frac{13028}{175} = 0 \\ 3 & \displaystyle \frac{\left(x - \frac{1}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y - \frac{13}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} - \frac{16 x}{7} + y^{2} - \frac{26 y}{5} + \frac{1108}{175} = 0 \\ 4 & \displaystyle \frac{\left(x - \frac{1}{2}\right)^{2}}{\frac{7}{144}} + \frac{1}{\frac{1}{9}} \left(y + \frac{4}{5}\right)^{2} = 1 & \qquad & \displaystyle \frac{144 x^{2}}{7} - \frac{144 x}{7} + 9 y^{2} + \frac{72 y}{5} + \frac{1733}{175} = 0 \\ 5 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{7}{36}} + \frac{\left(y - \frac{7}{5}\right)^{2}}{\frac{4}{9}} = 1 & \qquad & \displaystyle \frac{36 x^{2}}{7} - \frac{72 x}{7} + \frac{9 y^{2}}{4} - \frac{63 y}{10} + \frac{5987}{700} = 0 \\ 6 & \displaystyle \frac{x^{2}}{\frac{7}{36}} + \frac{\left(y - \frac{7}{5}\right)^{2}}{\frac{4}{9}} = 1 & \qquad & \displaystyle \frac{36 x^{2}}{7} + \frac{9 y^{2}}{4} - \frac{63 y}{10} + \frac{341}{100} = 0 \\ 7 & \displaystyle \frac{\left(x + \frac{7}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y + \frac{7}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} + 16 x + y^{2} + \frac{14 y}{5} + \frac{724}{25} = 0 \\ 8 & \displaystyle \frac{x^{2}}{\frac{7}{9}} + \frac{\left(y - \frac{14}{5}\right)^{2}}{\frac{16}{9}} = 1 & \qquad & \displaystyle \frac{9 x^{2}}{7} + \frac{9 y^{2}}{16} - \frac{63 y}{20} + \frac{341}{100} = 0 \\ 9 & \displaystyle \frac{\left(x + \frac{5}{2}\right)^{2}}{\frac{7}{144}} + \frac{1}{\frac{1}{9}} \left(y - \frac{11}{5}\right)^{2} = 1 & \qquad & \displaystyle \frac{144 x^{2}}{7} + \frac{720 x}{7} + 9 y^{2} - \frac{198 y}{5} + \frac{29948}{175} = 0 \\ 10 & \displaystyle \frac{\left(x + \frac{5}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y - \frac{13}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} + \frac{80 x}{7} + y^{2} - \frac{26 y}{5} + \frac{3508}{175} = 0 \\ 11 & \displaystyle \frac{x^{2}}{\frac{7}{9}} + \frac{\left(y - \frac{9}{5}\right)^{2}}{\frac{16}{9}} = 1 & \qquad & \displaystyle \frac{9 x^{2}}{7} + \frac{9 y^{2}}{16} - \frac{81 y}{40} + \frac{329}{400} = 0 \\ 12 & \displaystyle \frac{\left(x - \frac{3}{2}\right)^{2}}{\frac{7}{144}} + \frac{1}{\frac{1}{9}} \left(y + \frac{9}{5}\right)^{2} = 1 & \qquad & \displaystyle \frac{144 x^{2}}{7} - \frac{432 x}{7} + 9 y^{2} + \frac{162 y}{5} + \frac{13028}{175} = 0 \\ 13 & \displaystyle \frac{\left(x + 3\right)^{2}}{\frac{7}{36}} + \frac{\left(y - \frac{7}{5}\right)^{2}}{\frac{4}{9}} = 1 & \qquad & \displaystyle \frac{36 x^{2}}{7} + \frac{216 x}{7} + \frac{9 y^{2}}{4} - \frac{63 y}{10} + \frac{34787}{700} = 0 \\ 14 & \displaystyle \frac{\left(x + \frac{1}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y - \frac{8}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} + \frac{16 x}{7} + y^{2} - \frac{16 y}{5} + \frac{373}{175} = 0 \\ 15 & \displaystyle \frac{\left(x + \frac{5}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y - \frac{8}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} + \frac{80 x}{7} + y^{2} - \frac{16 y}{5} + \frac{2773}{175} = 0 \\ 16 & \displaystyle \frac{x^{2}}{\frac{7}{36}} + \frac{\left(y + \frac{8}{5}\right)^{2}}{\frac{4}{9}} = 1 & \qquad & \displaystyle \frac{36 x^{2}}{7} + \frac{9 y^{2}}{4} + \frac{36 y}{5} + \frac{119}{25} = 0 \\ 17 & \displaystyle \frac{\left(x + 1\right)^{2}}{\frac{7}{9}} + \frac{\left(y - \frac{9}{5}\right)^{2}}{\frac{16}{9}} = 1 & \qquad & \displaystyle \frac{9 x^{2}}{7} + \frac{18 x}{7} + \frac{9 y^{2}}{16} - \frac{81 y}{40} + \frac{5903}{2800} = 0 \\ 18 & \displaystyle \frac{\left(x + \frac{1}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y + \frac{7}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} + \frac{16 x}{7} + y^{2} + \frac{14 y}{5} + \frac{268}{175} = 0 \\ 19 & \displaystyle \frac{\left(x - \frac{1}{2}\right)^{2}}{\frac{7}{144}} + \frac{1}{\frac{1}{9}} \left(y - \frac{11}{5}\right)^{2} = 1 & \qquad & \displaystyle \frac{144 x^{2}}{7} - \frac{144 x}{7} + 9 y^{2} - \frac{198 y}{5} + \frac{8348}{175} = 0 \\ 20 & \displaystyle \frac{\left(x + 2\right)^{2}}{\frac{7}{36}} + \frac{\left(y + \frac{3}{5}\right)^{2}}{\frac{4}{9}} = 1 & \qquad & \displaystyle \frac{36 x^{2}}{7} + \frac{144 x}{7} + \frac{9 y^{2}}{4} + \frac{27 y}{10} + \frac{14267}{700} = 0 \\ 21 & \displaystyle \frac{\left(x - \frac{1}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y - \frac{8}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} - \frac{16 x}{7} + y^{2} - \frac{16 y}{5} + \frac{373}{175} = 0 \\ 22 & \displaystyle \frac{\left(x + \frac{5}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y + \frac{2}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} + \frac{80 x}{7} + y^{2} + \frac{4 y}{5} + \frac{2353}{175} = 0 \\ 23 & \displaystyle \frac{\left(x - \frac{1}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y + \frac{2}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} - \frac{16 x}{7} + y^{2} + \frac{4 y}{5} - \frac{47}{175} = 0 \\ 24 & \displaystyle \frac{\left(x + 2\right)^{2}}{\frac{7}{36}} + \frac{\left(y - \frac{7}{5}\right)^{2}}{\frac{4}{9}} = 1 & \qquad & \displaystyle \frac{36 x^{2}}{7} + \frac{144 x}{7} + \frac{9 y^{2}}{4} - \frac{63 y}{10} + \frac{16787}{700} = 0 \\ 25 & \displaystyle \frac{\left(x + \frac{7}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y + \frac{2}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} + 16 x + y^{2} + \frac{4 y}{5} + \frac{679}{25} = 0 \\ 26 & \displaystyle \frac{\left(x + \frac{7}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y - \frac{13}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} + 16 x + y^{2} - \frac{26 y}{5} + \frac{844}{25} = 0 \\ 27 & \displaystyle \frac{\left(x - \frac{3}{2}\right)^{2}}{\frac{7}{144}} + \frac{1}{\frac{1}{9}} \left(y - \frac{11}{5}\right)^{2} = 1 & \qquad & \displaystyle \frac{144 x^{2}}{7} - \frac{432 x}{7} + 9 y^{2} - \frac{198 y}{5} + \frac{15548}{175} = 0 \\ 28 & \displaystyle \frac{\left(x - \frac{1}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y + \frac{7}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} - \frac{16 x}{7} + y^{2} + \frac{14 y}{5} + \frac{268}{175} = 0 \\ 29 & \displaystyle \frac{\left(x + 4\right)^{2}}{\frac{7}{9}} + \frac{\left(y - \frac{9}{5}\right)^{2}}{\frac{16}{9}} = 1 & \qquad & \displaystyle \frac{9 x^{2}}{7} + \frac{72 x}{7} + \frac{9 y^{2}}{16} - \frac{81 y}{40} + \frac{59903}{2800} = 0 \\ 30 & \displaystyle \frac{\left(x - \frac{1}{2}\right)^{2}}{\frac{7}{144}} + \frac{1}{\frac{1}{9}} \left(y - \frac{6}{5}\right)^{2} = 1 & \qquad & \displaystyle \frac{144 x^{2}}{7} - \frac{144 x}{7} + 9 y^{2} - \frac{108 y}{5} + \frac{2993}{175} = 0 \\ 31 & \displaystyle \frac{\left(x + 3\right)^{2}}{\frac{7}{9}} + \frac{\left(y + \frac{1}{5}\right)^{2}}{\frac{16}{9}} = 1 & \qquad & \displaystyle \frac{9 x^{2}}{7} + \frac{54 x}{7} + \frac{9 y^{2}}{16} + \frac{9 y}{40} + \frac{29663}{2800} = 0 \\ 32 & \displaystyle \frac{\left(x + \frac{5}{2}\right)^{2}}{\frac{7}{144}} + \frac{1}{\frac{1}{9}} \left(y + \frac{4}{5}\right)^{2} = 1 & \qquad & \displaystyle \frac{144 x^{2}}{7} + \frac{720 x}{7} + 9 y^{2} + \frac{72 y}{5} + \frac{23333}{175} = 0 \\ 33 & \displaystyle \frac{\left(x + \frac{7}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y - \frac{8}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} + 16 x + y^{2} - \frac{16 y}{5} + \frac{739}{25} = 0 \\ 34 & \displaystyle \frac{\left(x + 4\right)^{2}}{\frac{7}{9}} + \frac{\left(y + \frac{6}{5}\right)^{2}}{\frac{16}{9}} = 1 & \qquad & \displaystyle \frac{9 x^{2}}{7} + \frac{72 x}{7} + \frac{9 y^{2}}{16} + \frac{27 y}{20} + \frac{14267}{700} = 0 \\ 35 & \displaystyle \frac{\left(x + \frac{3}{2}\right)^{2}}{\frac{7}{144}} + \frac{1}{\frac{1}{9}} \left(y - \frac{6}{5}\right)^{2} = 1 & \qquad & \displaystyle \frac{144 x^{2}}{7} + \frac{432 x}{7} + 9 y^{2} - \frac{108 y}{5} + \frac{10193}{175} = 0 \\ 36 & \displaystyle \frac{\left(x + 3\right)^{2}}{\frac{7}{9}} + \frac{\left(y - \frac{14}{5}\right)^{2}}{\frac{16}{9}} = 1 & \qquad & \displaystyle \frac{9 x^{2}}{7} + \frac{54 x}{7} + \frac{9 y^{2}}{16} - \frac{63 y}{20} + \frac{10487}{700} = 0 \\ 37 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{7}{36}} + \frac{\left(y - \frac{12}{5}\right)^{2}}{\frac{4}{9}} = 1 & \qquad & \displaystyle \frac{36 x^{2}}{7} - \frac{72 x}{7} + \frac{9 y^{2}}{4} - \frac{54 y}{5} + \frac{2993}{175} = 0 \\ 38 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{7}{36}} + \frac{\left(y + \frac{3}{5}\right)^{2}}{\frac{4}{9}} = 1 & \qquad & \displaystyle \frac{36 x^{2}}{7} - \frac{72 x}{7} + \frac{9 y^{2}}{4} + \frac{27 y}{10} + \frac{3467}{700} = 0 \\ 39 & \displaystyle \frac{x^{2}}{\frac{7}{9}} + \frac{\left(y + \frac{6}{5}\right)^{2}}{\frac{16}{9}} = 1 & \qquad & \displaystyle \frac{9 x^{2}}{7} + \frac{9 y^{2}}{16} + \frac{27 y}{20} - \frac{19}{100} = 0 \\ 40 & \displaystyle \frac{\left(x + \frac{1}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y + \frac{2}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} + \frac{16 x}{7} + y^{2} + \frac{4 y}{5} - \frac{47}{175} = 0 \\ 41 & \displaystyle \frac{\left(x + 1\right)^{2}}{\frac{7}{9}} + \frac{\left(y + \frac{1}{5}\right)^{2}}{\frac{16}{9}} = 1 & \qquad & \displaystyle \frac{9 x^{2}}{7} + \frac{18 x}{7} + \frac{9 y^{2}}{16} + \frac{9 y}{40} + \frac{863}{2800} = 0 \\ 42 & \displaystyle \frac{\left(x + \frac{1}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y - \frac{13}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} + \frac{16 x}{7} + y^{2} - \frac{26 y}{5} + \frac{1108}{175} = 0 \\ \hline \end{array} \]

As respostas para todos os itens (equações canônicas e gerais do segundo olho) são:

\[ \begin{array}{r|lll} \hline 1 & \displaystyle \frac{\left(x - \frac{1}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y + \frac{7}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} - \frac{16 x}{7} + y^{2} + \frac{14 y}{5} + \frac{268}{175} = 0 \\ 2 & \displaystyle \frac{\left(x + \frac{1}{2}\right)^{2}}{\frac{7}{144}} + \frac{1}{\frac{1}{9}} \left(y + \frac{9}{5}\right)^{2} = 1 & \qquad & \displaystyle \frac{144 x^{2}}{7} + \frac{144 x}{7} + 9 y^{2} + \frac{162 y}{5} + \frac{5828}{175} = 0 \\ 3 & \displaystyle \frac{\left(x - \frac{7}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y - \frac{13}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} - 16 x + y^{2} - \frac{26 y}{5} + \frac{844}{25} = 0 \\ 4 & \displaystyle \frac{\left(x - \frac{3}{2}\right)^{2}}{\frac{7}{144}} + \frac{1}{\frac{1}{9}} \left(y + \frac{4}{5}\right)^{2} = 1 & \qquad & \displaystyle \frac{144 x^{2}}{7} - \frac{432 x}{7} + 9 y^{2} + \frac{72 y}{5} + \frac{8933}{175} = 0 \\ 5 & \displaystyle \frac{\left(x - 3\right)^{2}}{\frac{7}{36}} + \frac{\left(y - \frac{7}{5}\right)^{2}}{\frac{4}{9}} = 1 & \qquad & \displaystyle \frac{36 x^{2}}{7} - \frac{216 x}{7} + \frac{9 y^{2}}{4} - \frac{63 y}{10} + \frac{34787}{700} = 0 \\ 6 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{7}{36}} + \frac{\left(y - \frac{7}{5}\right)^{2}}{\frac{4}{9}} = 1 & \qquad & \displaystyle \frac{36 x^{2}}{7} - \frac{144 x}{7} + \frac{9 y^{2}}{4} - \frac{63 y}{10} + \frac{16787}{700} = 0 \\ 7 & \displaystyle \frac{\left(x + \frac{1}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y + \frac{7}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} + \frac{16 x}{7} + y^{2} + \frac{14 y}{5} + \frac{268}{175} = 0 \\ 8 & \displaystyle \frac{\left(x - 4\right)^{2}}{\frac{7}{9}} + \frac{\left(y - \frac{14}{5}\right)^{2}}{\frac{16}{9}} = 1 & \qquad & \displaystyle \frac{9 x^{2}}{7} - \frac{72 x}{7} + \frac{9 y^{2}}{16} - \frac{63 y}{20} + \frac{16787}{700} = 0 \\ 9 & \displaystyle \frac{\left(x + \frac{3}{2}\right)^{2}}{\frac{7}{144}} + \frac{1}{\frac{1}{9}} \left(y - \frac{11}{5}\right)^{2} = 1 & \qquad & \displaystyle \frac{144 x^{2}}{7} + \frac{432 x}{7} + 9 y^{2} - \frac{198 y}{5} + \frac{15548}{175} = 0 \\ 10 & \displaystyle \frac{\left(x - \frac{1}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y - \frac{13}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} - \frac{16 x}{7} + y^{2} - \frac{26 y}{5} + \frac{1108}{175} = 0 \\ 11 & \displaystyle \frac{\left(x - 4\right)^{2}}{\frac{7}{9}} + \frac{\left(y - \frac{9}{5}\right)^{2}}{\frac{16}{9}} = 1 & \qquad & \displaystyle \frac{9 x^{2}}{7} - \frac{72 x}{7} + \frac{9 y^{2}}{16} - \frac{81 y}{40} + \frac{59903}{2800} = 0 \\ 12 & \displaystyle \frac{\left(x - \frac{5}{2}\right)^{2}}{\frac{7}{144}} + \frac{1}{\frac{1}{9}} \left(y + \frac{9}{5}\right)^{2} = 1 & \qquad & \displaystyle \frac{144 x^{2}}{7} - \frac{720 x}{7} + 9 y^{2} + \frac{162 y}{5} + \frac{27428}{175} = 0 \\ 13 & \displaystyle \frac{\left(x + 1\right)^{2}}{\frac{7}{36}} + \frac{\left(y - \frac{7}{5}\right)^{2}}{\frac{4}{9}} = 1 & \qquad & \displaystyle \frac{36 x^{2}}{7} + \frac{72 x}{7} + \frac{9 y^{2}}{4} - \frac{63 y}{10} + \frac{5987}{700} = 0 \\ 14 & \displaystyle \frac{\left(x - \frac{5}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y - \frac{8}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} - \frac{80 x}{7} + y^{2} - \frac{16 y}{5} + \frac{2773}{175} = 0 \\ 15 & \displaystyle \frac{\left(x - \frac{1}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y - \frac{8}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} - \frac{16 x}{7} + y^{2} - \frac{16 y}{5} + \frac{373}{175} = 0 \\ 16 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{7}{36}} + \frac{\left(y + \frac{8}{5}\right)^{2}}{\frac{4}{9}} = 1 & \qquad & \displaystyle \frac{36 x^{2}}{7} - \frac{144 x}{7} + \frac{9 y^{2}}{4} + \frac{36 y}{5} + \frac{4433}{175} = 0 \\ 17 & \displaystyle \frac{\left(x - 3\right)^{2}}{\frac{7}{9}} + \frac{\left(y - \frac{9}{5}\right)^{2}}{\frac{16}{9}} = 1 & \qquad & \displaystyle \frac{9 x^{2}}{7} - \frac{54 x}{7} + \frac{9 y^{2}}{16} - \frac{81 y}{40} + \frac{34703}{2800} = 0 \\ 18 & \displaystyle \frac{\left(x - \frac{5}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y + \frac{7}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} - \frac{80 x}{7} + y^{2} + \frac{14 y}{5} + \frac{2668}{175} = 0 \\ 19 & \displaystyle \frac{\left(x - \frac{3}{2}\right)^{2}}{\frac{7}{144}} + \frac{1}{\frac{1}{9}} \left(y - \frac{11}{5}\right)^{2} = 1 & \qquad & \displaystyle \frac{144 x^{2}}{7} - \frac{432 x}{7} + 9 y^{2} - \frac{198 y}{5} + \frac{15548}{175} = 0 \\ 20 & \displaystyle \frac{x^{2}}{\frac{7}{36}} + \frac{\left(y + \frac{3}{5}\right)^{2}}{\frac{4}{9}} = 1 & \qquad & \displaystyle \frac{36 x^{2}}{7} + \frac{9 y^{2}}{4} + \frac{27 y}{10} - \frac{19}{100} = 0 \\ 21 & \displaystyle \frac{\left(x - \frac{7}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y - \frac{8}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} - 16 x + y^{2} - \frac{16 y}{5} + \frac{739}{25} = 0 \\ 22 & \displaystyle \frac{\left(x - \frac{1}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y + \frac{2}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} - \frac{16 x}{7} + y^{2} + \frac{4 y}{5} - \frac{47}{175} = 0 \\ 23 & \displaystyle \frac{\left(x - \frac{7}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y + \frac{2}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} - 16 x + y^{2} + \frac{4 y}{5} + \frac{679}{25} = 0 \\ 24 & \displaystyle \frac{x^{2}}{\frac{7}{36}} + \frac{\left(y - \frac{7}{5}\right)^{2}}{\frac{4}{9}} = 1 & \qquad & \displaystyle \frac{36 x^{2}}{7} + \frac{9 y^{2}}{4} - \frac{63 y}{10} + \frac{341}{100} = 0 \\ 25 & \displaystyle \frac{\left(x + \frac{1}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y + \frac{2}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} + \frac{16 x}{7} + y^{2} + \frac{4 y}{5} - \frac{47}{175} = 0 \\ 26 & \displaystyle \frac{\left(x + \frac{1}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y - \frac{13}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} + \frac{16 x}{7} + y^{2} - \frac{26 y}{5} + \frac{1108}{175} = 0 \\ 27 & \displaystyle \frac{\left(x - \frac{5}{2}\right)^{2}}{\frac{7}{144}} + \frac{1}{\frac{1}{9}} \left(y - \frac{11}{5}\right)^{2} = 1 & \qquad & \displaystyle \frac{144 x^{2}}{7} - \frac{720 x}{7} + 9 y^{2} - \frac{198 y}{5} + \frac{29948}{175} = 0 \\ 28 & \displaystyle \frac{\left(x - \frac{7}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y + \frac{7}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} - 16 x + y^{2} + \frac{14 y}{5} + \frac{724}{25} = 0 \\ 29 & \displaystyle \frac{x^{2}}{\frac{7}{9}} + \frac{\left(y - \frac{9}{5}\right)^{2}}{\frac{16}{9}} = 1 & \qquad & \displaystyle \frac{9 x^{2}}{7} + \frac{9 y^{2}}{16} - \frac{81 y}{40} + \frac{329}{400} = 0 \\ 30 & \displaystyle \frac{\left(x - \frac{3}{2}\right)^{2}}{\frac{7}{144}} + \frac{1}{\frac{1}{9}} \left(y - \frac{6}{5}\right)^{2} = 1 & \qquad & \displaystyle \frac{144 x^{2}}{7} - \frac{432 x}{7} + 9 y^{2} - \frac{108 y}{5} + \frac{10193}{175} = 0 \\ 31 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{7}{9}} + \frac{\left(y + \frac{1}{5}\right)^{2}}{\frac{16}{9}} = 1 & \qquad & \displaystyle \frac{9 x^{2}}{7} - \frac{18 x}{7} + \frac{9 y^{2}}{16} + \frac{9 y}{40} + \frac{863}{2800} = 0 \\ 32 & \displaystyle \frac{\left(x + \frac{3}{2}\right)^{2}}{\frac{7}{144}} + \frac{1}{\frac{1}{9}} \left(y + \frac{4}{5}\right)^{2} = 1 & \qquad & \displaystyle \frac{144 x^{2}}{7} + \frac{432 x}{7} + 9 y^{2} + \frac{72 y}{5} + \frac{8933}{175} = 0 \\ 33 & \displaystyle \frac{\left(x + \frac{1}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y - \frac{8}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} + \frac{16 x}{7} + y^{2} - \frac{16 y}{5} + \frac{373}{175} = 0 \\ 34 & \displaystyle \frac{x^{2}}{\frac{7}{9}} + \frac{\left(y + \frac{6}{5}\right)^{2}}{\frac{16}{9}} = 1 & \qquad & \displaystyle \frac{9 x^{2}}{7} + \frac{9 y^{2}}{16} + \frac{27 y}{20} - \frac{19}{100} = 0 \\ 35 & \displaystyle \frac{\left(x + \frac{1}{2}\right)^{2}}{\frac{7}{144}} + \frac{1}{\frac{1}{9}} \left(y - \frac{6}{5}\right)^{2} = 1 & \qquad & \displaystyle \frac{144 x^{2}}{7} + \frac{144 x}{7} + 9 y^{2} - \frac{108 y}{5} + \frac{2993}{175} = 0 \\ 36 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{7}{9}} + \frac{\left(y - \frac{14}{5}\right)^{2}}{\frac{16}{9}} = 1 & \qquad & \displaystyle \frac{9 x^{2}}{7} - \frac{18 x}{7} + \frac{9 y^{2}}{16} - \frac{63 y}{20} + \frac{3287}{700} = 0 \\ 37 & \displaystyle \frac{\left(x - 3\right)^{2}}{\frac{7}{36}} + \frac{\left(y - \frac{12}{5}\right)^{2}}{\frac{4}{9}} = 1 & \qquad & \displaystyle \frac{36 x^{2}}{7} - \frac{216 x}{7} + \frac{9 y^{2}}{4} - \frac{54 y}{5} + \frac{10193}{175} = 0 \\ 38 & \displaystyle \frac{\left(x - 3\right)^{2}}{\frac{7}{36}} + \frac{\left(y + \frac{3}{5}\right)^{2}}{\frac{4}{9}} = 1 & \qquad & \displaystyle \frac{36 x^{2}}{7} - \frac{216 x}{7} + \frac{9 y^{2}}{4} + \frac{27 y}{10} + \frac{32267}{700} = 0 \\ 39 & \displaystyle \frac{\left(x - 4\right)^{2}}{\frac{7}{9}} + \frac{\left(y + \frac{6}{5}\right)^{2}}{\frac{16}{9}} = 1 & \qquad & \displaystyle \frac{9 x^{2}}{7} - \frac{72 x}{7} + \frac{9 y^{2}}{16} + \frac{27 y}{20} + \frac{14267}{700} = 0 \\ 40 & \displaystyle \frac{\left(x - \frac{5}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y + \frac{2}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} - \frac{80 x}{7} + y^{2} + \frac{4 y}{5} + \frac{2353}{175} = 0 \\ 41 & \displaystyle \frac{\left(x - 3\right)^{2}}{\frac{7}{9}} + \frac{\left(y + \frac{1}{5}\right)^{2}}{\frac{16}{9}} = 1 & \qquad & \displaystyle \frac{9 x^{2}}{7} - \frac{54 x}{7} + \frac{9 y^{2}}{16} + \frac{9 y}{40} + \frac{29663}{2800} = 0 \\ 42 & \displaystyle \frac{\left(x - \frac{5}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y - \frac{13}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} - \frac{80 x}{7} + y^{2} - \frac{26 y}{5} + \frac{3508}{175} = 0 \\ \hline \end{array} \]

2.4 Boca

  • A parte superior da boca é uma parábola com concavidade para cima, com as coordenadas do foco \(F\) e a distância focal \(p\) dadas abaixo (veja o seu número \(n\) nesta lista).

  • Ache a equação canônica desta parábola.

    1. \(\displaystyle \quad F = \left( -1; \ -3\right)\ ,\quad p = \frac{3}{4}\)

    2. \(\displaystyle \quad F = \left( -1; \ - \frac{7}{3}\right)\ ,\quad p = \frac{1}{4}\)

    3. \(\displaystyle \quad F = \left( 2; \ 1\right)\ ,\quad p = \frac{3}{4}\)

    4. \(\displaystyle \quad F = \left( 1; \ - \frac{4}{3}\right)\ ,\quad p = \frac{1}{4}\)

    5. \(\displaystyle \quad F = \left( 2; \ \frac{1}{3}\right)\ ,\quad p = \frac{1}{2}\)

    6. \(\displaystyle \quad F = \left( 1; \ \frac{1}{3}\right)\ ,\quad p = \frac{1}{2}\)

    7. \(\displaystyle \quad F = \left( -2; \ -3\right)\ ,\quad p = \frac{3}{4}\)

    8. \(\displaystyle \quad F = \left( 2; \ \frac{2}{3}\right)\ ,\quad p = 1\)

    9. \(\displaystyle \quad F = \left( -2; \ \frac{5}{3}\right)\ ,\quad p = \frac{1}{4}\)

    10. \(\displaystyle \quad F = \left( -1; \ 1\right)\ ,\quad p = \frac{3}{4}\)

    11. \(\displaystyle \quad F = \left( 2; \ - \frac{1}{3}\right)\ ,\quad p = 1\)

    12. \(\displaystyle \quad F = \left( 2; \ - \frac{7}{3}\right)\ ,\quad p = \frac{1}{4}\)

    13. \(\displaystyle \quad F = \left( -2; \ \frac{1}{3}\right)\ ,\quad p = \frac{1}{2}\)

    14. \(\displaystyle \quad F = \left( 1; \ 0\right)\ ,\quad p = \frac{3}{4}\)

    15. \(\displaystyle \quad F = \left( -1; \ 0\right)\ ,\quad p = \frac{3}{4}\)

    16. \(\displaystyle \quad F = \left( 1; \ - \frac{8}{3}\right)\ ,\quad p = \frac{1}{2}\)

    17. \(\displaystyle \quad F = \left( 1; \ - \frac{1}{3}\right)\ ,\quad p = 1\)

    18. \(\displaystyle \quad F = \left( 1; \ -3\right)\ ,\quad p = \frac{3}{4}\)

    19. \(\displaystyle \quad F = \left( 1; \ \frac{5}{3}\right)\ ,\quad p = \frac{1}{4}\)

    20. \(\displaystyle \quad F = \left( -1; \ - \frac{5}{3}\right)\ ,\quad p = \frac{1}{2}\)

    21. \(\displaystyle \quad F = \left( 2; \ 0\right)\ ,\quad p = \frac{3}{4}\)

    22. \(\displaystyle \quad F = \left( -1; \ -2\right)\ ,\quad p = \frac{3}{4}\)

    23. \(\displaystyle \quad F = \left( 2; \ -2\right)\ ,\quad p = \frac{3}{4}\)

    24. \(\displaystyle \quad F = \left( -1; \ \frac{1}{3}\right)\ ,\quad p = \frac{1}{2}\)

    25. \(\displaystyle \quad F = \left( -2; \ -2\right)\ ,\quad p = \frac{3}{4}\)

    26. \(\displaystyle \quad F = \left( -2; \ 1\right)\ ,\quad p = \frac{3}{4}\)

    27. \(\displaystyle \quad F = \left( 2; \ \frac{5}{3}\right)\ ,\quad p = \frac{1}{4}\)

    28. \(\displaystyle \quad F = \left( 2; \ -3\right)\ ,\quad p = \frac{3}{4}\)

    29. \(\displaystyle \quad F = \left( -2; \ - \frac{1}{3}\right)\ ,\quad p = 1\)

    30. \(\displaystyle \quad F = \left( 1; \ \frac{2}{3}\right)\ ,\quad p = \frac{1}{4}\)

    31. \(\displaystyle \quad F = \left( -1; \ - \frac{7}{3}\right)\ ,\quad p = 1\)

    32. \(\displaystyle \quad F = \left( -2; \ - \frac{4}{3}\right)\ ,\quad p = \frac{1}{4}\)

    33. \(\displaystyle \quad F = \left( -2; \ 0\right)\ ,\quad p = \frac{3}{4}\)

    34. \(\displaystyle \quad F = \left( -2; \ - \frac{10}{3}\right)\ ,\quad p = 1\)

    35. \(\displaystyle \quad F = \left( -1; \ \frac{2}{3}\right)\ ,\quad p = \frac{1}{4}\)

    36. \(\displaystyle \quad F = \left( -1; \ \frac{2}{3}\right)\ ,\quad p = 1\)

    37. \(\displaystyle \quad F = \left( 2; \ \frac{4}{3}\right)\ ,\quad p = \frac{1}{2}\)

    38. \(\displaystyle \quad F = \left( 2; \ - \frac{5}{3}\right)\ ,\quad p = \frac{1}{2}\)

    39. \(\displaystyle \quad F = \left( 2; \ - \frac{10}{3}\right)\ ,\quad p = 1\)

    40. \(\displaystyle \quad F = \left( 1; \ -2\right)\ ,\quad p = \frac{3}{4}\)

    41. \(\displaystyle \quad F = \left( 1; \ - \frac{7}{3}\right)\ ,\quad p = 1\)

    42. \(\displaystyle \quad F = \left( 1; \ 1\right)\ ,\quad p = \frac{3}{4}\)

  • Vamos resolver o item 1. Os passos são os mesmos para todos os itens; só mudam os valores.

  • A equação canônica da parábola com eixo vertical é

    \[ y - k = \frac{1}{4p}(x - h)^2 \]

    onde

    • \((h, k)\) é o vértice;

    • \(p = 3/4\) é a distância focal, que foi dada.

  • As coordenadas do foco \(F = (-1, -3)\) foram dadas, e o vértice está exatamente a \(p = 3/4\) unidades de distância abaixo do foco.

  • Ou seja, \(h = -1\) e \(k = -3 - 3/4 = -15/4\).

  • A equação canônica fica

    \[ y + \frac{15}{4} = \frac{1}{3}(x + 1)^2 \]

As respostas para todos os itens são:

\[ \begin{array}{r|l} \hline 1 & \displaystyle y + \frac{15}{4} = \frac{\left(x + 1\right)^{2}}{3} \\ 2 & \displaystyle y + \frac{31}{12} = \left(x + 1\right)^{2} \\ 3 & \displaystyle y - \frac{1}{4} = \frac{\left(x - 2\right)^{2}}{3} \\ 4 & \displaystyle y + \frac{19}{12} = \left(x - 1\right)^{2} \\ 5 & \displaystyle y + \frac{1}{6} = \frac{\left(x - 2\right)^{2}}{2} \\ 6 & \displaystyle y + \frac{1}{6} = \frac{\left(x - 1\right)^{2}}{2} \\ 7 & \displaystyle y + \frac{15}{4} = \frac{\left(x + 2\right)^{2}}{3} \\ 8 & \displaystyle y + \frac{1}{3} = \frac{\left(x - 2\right)^{2}}{4} \\ 9 & \displaystyle y - \frac{17}{12} = \left(x + 2\right)^{2} \\ 10 & \displaystyle y - \frac{1}{4} = \frac{\left(x + 1\right)^{2}}{3} \\ 11 & \displaystyle y + \frac{4}{3} = \frac{\left(x - 2\right)^{2}}{4} \\ 12 & \displaystyle y + \frac{31}{12} = \left(x - 2\right)^{2} \\ 13 & \displaystyle y + \frac{1}{6} = \frac{\left(x + 2\right)^{2}}{2} \\ 14 & \displaystyle y + \frac{3}{4} = \frac{\left(x - 1\right)^{2}}{3} \\ 15 & \displaystyle y + \frac{3}{4} = \frac{\left(x + 1\right)^{2}}{3} \\ 16 & \displaystyle y + \frac{19}{6} = \frac{\left(x - 1\right)^{2}}{2} \\ 17 & \displaystyle y + \frac{4}{3} = \frac{\left(x - 1\right)^{2}}{4} \\ 18 & \displaystyle y + \frac{15}{4} = \frac{\left(x - 1\right)^{2}}{3} \\ 19 & \displaystyle y - \frac{17}{12} = \left(x - 1\right)^{2} \\ 20 & \displaystyle y + \frac{13}{6} = \frac{\left(x + 1\right)^{2}}{2} \\ 21 & \displaystyle y + \frac{3}{4} = \frac{\left(x - 2\right)^{2}}{3} \\ 22 & \displaystyle y + \frac{11}{4} = \frac{\left(x + 1\right)^{2}}{3} \\ 23 & \displaystyle y + \frac{11}{4} = \frac{\left(x - 2\right)^{2}}{3} \\ 24 & \displaystyle y + \frac{1}{6} = \frac{\left(x + 1\right)^{2}}{2} \\ 25 & \displaystyle y + \frac{11}{4} = \frac{\left(x + 2\right)^{2}}{3} \\ 26 & \displaystyle y - \frac{1}{4} = \frac{\left(x + 2\right)^{2}}{3} \\ 27 & \displaystyle y - \frac{17}{12} = \left(x - 2\right)^{2} \\ 28 & \displaystyle y + \frac{15}{4} = \frac{\left(x - 2\right)^{2}}{3} \\ 29 & \displaystyle y + \frac{4}{3} = \frac{\left(x + 2\right)^{2}}{4} \\ 30 & \displaystyle y - \frac{5}{12} = \left(x - 1\right)^{2} \\ 31 & \displaystyle y + \frac{10}{3} = \frac{\left(x + 1\right)^{2}}{4} \\ 32 & \displaystyle y + \frac{19}{12} = \left(x + 2\right)^{2} \\ 33 & \displaystyle y + \frac{3}{4} = \frac{\left(x + 2\right)^{2}}{3} \\ 34 & \displaystyle y + \frac{13}{3} = \frac{\left(x + 2\right)^{2}}{4} \\ 35 & \displaystyle y - \frac{5}{12} = \left(x + 1\right)^{2} \\ 36 & \displaystyle y + \frac{1}{3} = \frac{\left(x + 1\right)^{2}}{4} \\ 37 & \displaystyle y - \frac{5}{6} = \frac{\left(x - 2\right)^{2}}{2} \\ 38 & \displaystyle y + \frac{13}{6} = \frac{\left(x - 2\right)^{2}}{2} \\ 39 & \displaystyle y + \frac{13}{3} = \frac{\left(x - 2\right)^{2}}{4} \\ 40 & \displaystyle y + \frac{11}{4} = \frac{\left(x - 1\right)^{2}}{3} \\ 41 & \displaystyle y + \frac{10}{3} = \frac{\left(x - 1\right)^{2}}{4} \\ 42 & \displaystyle y - \frac{1}{4} = \frac{\left(x - 1\right)^{2}}{3} \\ \hline \end{array} \]

  • A parte inferior da boca também é uma parábola, cuja equação geral é dada abaixo (veja o seu número \(n\) nesta lista).

  • Ache a equação canônica desta parábola.

    1. \(\displaystyle \quad x^{2} + 2 x - \frac{27 y}{13} - \frac{217}{26} = 0\)

    2. \(\displaystyle \quad x^{2} + 2 x - \frac{9 y}{13} - \frac{25}{26} = 0\)

    3. \(\displaystyle \quad x^{2} - 4 x - \frac{27 y}{13} + \frac{77}{26} = 0\)

    4. \(\displaystyle \quad x^{2} - 2 x - \frac{9 y}{13} - \frac{7}{26} = 0\)

    5. \(\displaystyle \quad x^{2} - 4 x - \frac{18 y}{13} + \frac{40}{13} = 0\)

    6. \(\displaystyle \quad x^{2} - 2 x - \frac{18 y}{13} + \frac{1}{13} = 0\)

    7. \(\displaystyle \quad x^{2} + 4 x - \frac{27 y}{13} - \frac{139}{26} = 0\)

    8. \(\displaystyle \quad x^{2} - 4 x - \frac{36 y}{13} + \frac{4}{13} = 0\)

    9. \(\displaystyle \quad x^{2} + 4 x - \frac{9 y}{13} + \frac{125}{26} = 0\)

    10. \(\displaystyle \quad x^{2} + 2 x - \frac{27 y}{13} - \frac{1}{26} = 0\)

    11. \(\displaystyle \quad x^{2} - 4 x - \frac{36 y}{13} - \frac{32}{13} = 0\)

    12. \(\displaystyle \quad x^{2} - 4 x - \frac{9 y}{13} + \frac{53}{26} = 0\)

    13. \(\displaystyle \quad x^{2} + 4 x - \frac{18 y}{13} + \frac{40}{13} = 0\)

    14. \(\displaystyle \quad x^{2} - 2 x - \frac{27 y}{13} - \frac{55}{26} = 0\)

    15. \(\displaystyle \quad x^{2} + 2 x - \frac{27 y}{13} - \frac{55}{26} = 0\)

    16. \(\displaystyle \quad x^{2} - 2 x - \frac{18 y}{13} - \frac{53}{13} = 0\)

    17. \(\displaystyle \quad x^{2} - 2 x - \frac{36 y}{13} - \frac{71}{13} = 0\)

    18. \(\displaystyle \quad x^{2} - 2 x - \frac{27 y}{13} - \frac{217}{26} = 0\)

    19. \(\displaystyle \quad x^{2} - 2 x - \frac{9 y}{13} + \frac{47}{26} = 0\)

    20. \(\displaystyle \quad x^{2} + 2 x - \frac{18 y}{13} - \frac{35}{13} = 0\)

    21. \(\displaystyle \quad x^{2} - 4 x - \frac{27 y}{13} + \frac{23}{26} = 0\)

    22. \(\displaystyle \quad x^{2} + 2 x - \frac{27 y}{13} - \frac{163}{26} = 0\)

    23. \(\displaystyle \quad x^{2} - 4 x - \frac{27 y}{13} - \frac{85}{26} = 0\)

    24. \(\displaystyle \quad x^{2} + 2 x - \frac{18 y}{13} + \frac{1}{13} = 0\)

    25. \(\displaystyle \quad x^{2} + 4 x - \frac{27 y}{13} - \frac{85}{26} = 0\)

    26. \(\displaystyle \quad x^{2} + 4 x - \frac{27 y}{13} + \frac{77}{26} = 0\)

    27. \(\displaystyle \quad x^{2} - 4 x - \frac{9 y}{13} + \frac{125}{26} = 0\)

    28. \(\displaystyle \quad x^{2} - 4 x - \frac{27 y}{13} - \frac{139}{26} = 0\)

    29. \(\displaystyle \quad x^{2} + 4 x - \frac{36 y}{13} - \frac{32}{13} = 0\)

    30. \(\displaystyle \quad x^{2} - 2 x - \frac{9 y}{13} + \frac{29}{26} = 0\)

    31. \(\displaystyle \quad x^{2} + 2 x - \frac{36 y}{13} - 11 = 0\)

    32. \(\displaystyle \quad x^{2} + 4 x - \frac{9 y}{13} + \frac{71}{26} = 0\)

    33. \(\displaystyle \quad x^{2} + 4 x - \frac{27 y}{13} + \frac{23}{26} = 0\)

    34. \(\displaystyle \quad x^{2} + 4 x - \frac{36 y}{13} - \frac{140}{13} = 0\)

    35. \(\displaystyle \quad x^{2} + 2 x - \frac{9 y}{13} + \frac{29}{26} = 0\)

    36. \(\displaystyle \quad x^{2} + 2 x - \frac{36 y}{13} - \frac{35}{13} = 0\)

    37. \(\displaystyle \quad x^{2} - 4 x - \frac{18 y}{13} + \frac{58}{13} = 0\)

    38. \(\displaystyle \quad x^{2} - 4 x - \frac{18 y}{13} + \frac{4}{13} = 0\)

    39. \(\displaystyle \quad x^{2} - 4 x - \frac{36 y}{13} - \frac{140}{13} = 0\)

    40. \(\displaystyle \quad x^{2} - 2 x - \frac{27 y}{13} - \frac{163}{26} = 0\)

    41. \(\displaystyle \quad x^{2} - 2 x - \frac{36 y}{13} - 11 = 0\)

    42. \(\displaystyle \quad x^{2} - 2 x - \frac{27 y}{13} - \frac{1}{26} = 0\)

  • Vamos resolver o item 1. Os passos são os mesmos para todos os itens; só mudam os valores.

  • A equação é

    \[x^{2} + 2 x - \frac{27 y}{13} - \frac{217}{26} = 0\]

  • Vamos separar os termos em \(x\):

    \[x^{2} + 2 x\]

  • Completando o quadrado, isto é igual a:

    \[\left(x + 1\right)^{2} - 1\]

  • Agora, somamos esta expressão com o termo em \(y\) e o termo independente. O resultado é uma equação equivalente à original:

    \[- \frac{27 y}{13} + \left(x + 1\right)^{2} - \frac{243}{26} = 0\]

  • Rearrumando, chegamos à forma canônica:

    \[y + \frac{9}{2} = \frac{13 \left(x + 1\right)^{2}}{27}\]

As respostas para todos os itens são:

\[ \begin{array}{r|l} \hline 1 & \displaystyle y + \frac{9}{2} = \frac{13 \left(x + 1\right)^{2}}{27} \\ 2 & \displaystyle y + \frac{17}{6} = \frac{13 \left(x + 1\right)^{2}}{9} \\ 3 & \displaystyle y + \frac{1}{2} = \frac{13 \left(x - 2\right)^{2}}{27} \\ 4 & \displaystyle y + \frac{11}{6} = \frac{13 \left(x - 1\right)^{2}}{9} \\ 5 & \displaystyle y + \frac{2}{3} = \frac{13 \left(x - 2\right)^{2}}{18} \\ 6 & \displaystyle y + \frac{2}{3} = \frac{13 \left(x - 1\right)^{2}}{18} \\ 7 & \displaystyle y + \frac{9}{2} = \frac{13 \left(x + 2\right)^{2}}{27} \\ 8 & \displaystyle y + \frac{4}{3} = \frac{13 \left(x - 2\right)^{2}}{36} \\ 9 & \displaystyle y - \frac{7}{6} = \frac{13 \left(x + 2\right)^{2}}{9} \\ 10 & \displaystyle y + \frac{1}{2} = \frac{13 \left(x + 1\right)^{2}}{27} \\ 11 & \displaystyle y + \frac{7}{3} = \frac{13 \left(x - 2\right)^{2}}{36} \\ 12 & \displaystyle y + \frac{17}{6} = \frac{13 \left(x - 2\right)^{2}}{9} \\ 13 & \displaystyle y + \frac{2}{3} = \frac{13 \left(x + 2\right)^{2}}{18} \\ 14 & \displaystyle y + \frac{3}{2} = \frac{13 \left(x - 1\right)^{2}}{27} \\ 15 & \displaystyle y + \frac{3}{2} = \frac{13 \left(x + 1\right)^{2}}{27} \\ 16 & \displaystyle y + \frac{11}{3} = \frac{13 \left(x - 1\right)^{2}}{18} \\ 17 & \displaystyle y + \frac{7}{3} = \frac{13 \left(x - 1\right)^{2}}{36} \\ 18 & \displaystyle y + \frac{9}{2} = \frac{13 \left(x - 1\right)^{2}}{27} \\ 19 & \displaystyle y - \frac{7}{6} = \frac{13 \left(x - 1\right)^{2}}{9} \\ 20 & \displaystyle y + \frac{8}{3} = \frac{13 \left(x + 1\right)^{2}}{18} \\ 21 & \displaystyle y + \frac{3}{2} = \frac{13 \left(x - 2\right)^{2}}{27} \\ 22 & \displaystyle y + \frac{7}{2} = \frac{13 \left(x + 1\right)^{2}}{27} \\ 23 & \displaystyle y + \frac{7}{2} = \frac{13 \left(x - 2\right)^{2}}{27} \\ 24 & \displaystyle y + \frac{2}{3} = \frac{13 \left(x + 1\right)^{2}}{18} \\ 25 & \displaystyle y + \frac{7}{2} = \frac{13 \left(x + 2\right)^{2}}{27} \\ 26 & \displaystyle y + \frac{1}{2} = \frac{13 \left(x + 2\right)^{2}}{27} \\ 27 & \displaystyle y - \frac{7}{6} = \frac{13 \left(x - 2\right)^{2}}{9} \\ 28 & \displaystyle y + \frac{9}{2} = \frac{13 \left(x - 2\right)^{2}}{27} \\ 29 & \displaystyle y + \frac{7}{3} = \frac{13 \left(x + 2\right)^{2}}{36} \\ 30 & \displaystyle y - \frac{1}{6} = \frac{13 \left(x - 1\right)^{2}}{9} \\ 31 & \displaystyle y + \frac{13}{3} = \frac{13 \left(x + 1\right)^{2}}{36} \\ 32 & \displaystyle y + \frac{11}{6} = \frac{13 \left(x + 2\right)^{2}}{9} \\ 33 & \displaystyle y + \frac{3}{2} = \frac{13 \left(x + 2\right)^{2}}{27} \\ 34 & \displaystyle y + \frac{16}{3} = \frac{13 \left(x + 2\right)^{2}}{36} \\ 35 & \displaystyle y - \frac{1}{6} = \frac{13 \left(x + 1\right)^{2}}{9} \\ 36 & \displaystyle y + \frac{4}{3} = \frac{13 \left(x + 1\right)^{2}}{36} \\ 37 & \displaystyle y - \frac{1}{3} = \frac{13 \left(x - 2\right)^{2}}{18} \\ 38 & \displaystyle y + \frac{8}{3} = \frac{13 \left(x - 2\right)^{2}}{18} \\ 39 & \displaystyle y + \frac{16}{3} = \frac{13 \left(x - 2\right)^{2}}{36} \\ 40 & \displaystyle y + \frac{7}{2} = \frac{13 \left(x - 1\right)^{2}}{27} \\ 41 & \displaystyle y + \frac{13}{3} = \frac{13 \left(x - 1\right)^{2}}{36} \\ 42 & \displaystyle y + \frac{1}{2} = \frac{13 \left(x - 1\right)^{2}}{27} \\ \hline \end{array} \]

  • Vamos resolver o item 1. Os passos são os mesmos para todos os itens; só mudam os valores.

  • Os pontos no interior da boca são exatamente aqueles que estão, ao mesmo tempo, abaixo da parte superior e acima da parte inferior.

  • São os pontos \((x, y)\) que satisfazem o seguinte sistema de inequações:

    \[ \begin{cases} y + \frac{15}{4} < \frac{\left(x + 1\right)^{2}}{3} \\ y + \frac{9}{2} > \frac{13 \left(x + 1\right)^{2}}{27} \end{cases} \]

As respostas para todos os itens são:

\[ \begin{array}{r|l} \hline 1 & \begin{cases} \displaystyle y + \frac{15}{4} < \frac{\left(x + 1\right)^{2}}{3} \\ \displaystyle y + \frac{9}{2} > \frac{13 \left(x + 1\right)^{2}}{27} \end{cases} \\ 2 & \begin{cases} \displaystyle y + \frac{31}{12} < \left(x + 1\right)^{2} \\ \displaystyle y + \frac{17}{6} > \frac{13 \left(x + 1\right)^{2}}{9} \end{cases} \\ 3 & \begin{cases} \displaystyle y - \frac{1}{4} < \frac{\left(x - 2\right)^{2}}{3} \\ \displaystyle y + \frac{1}{2} > \frac{13 \left(x - 2\right)^{2}}{27} \end{cases} \\ 4 & \begin{cases} \displaystyle y + \frac{19}{12} < \left(x - 1\right)^{2} \\ \displaystyle y + \frac{11}{6} > \frac{13 \left(x - 1\right)^{2}}{9} \end{cases} \\ 5 & \begin{cases} \displaystyle y + \frac{1}{6} < \frac{\left(x - 2\right)^{2}}{2} \\ \displaystyle y + \frac{2}{3} > \frac{13 \left(x - 2\right)^{2}}{18} \end{cases} \\ 6 & \begin{cases} \displaystyle y + \frac{1}{6} < \frac{\left(x - 1\right)^{2}}{2} \\ \displaystyle y + \frac{2}{3} > \frac{13 \left(x - 1\right)^{2}}{18} \end{cases} \\ 7 & \begin{cases} \displaystyle y + \frac{15}{4} < \frac{\left(x + 2\right)^{2}}{3} \\ \displaystyle y + \frac{9}{2} > \frac{13 \left(x + 2\right)^{2}}{27} \end{cases} \\ 8 & \begin{cases} \displaystyle y + \frac{1}{3} < \frac{\left(x - 2\right)^{2}}{4} \\ \displaystyle y + \frac{4}{3} > \frac{13 \left(x - 2\right)^{2}}{36} \end{cases} \\ 9 & \begin{cases} \displaystyle y - \frac{17}{12} < \left(x + 2\right)^{2} \\ \displaystyle y - \frac{7}{6} > \frac{13 \left(x + 2\right)^{2}}{9} \end{cases} \\ 10 & \begin{cases} \displaystyle y - \frac{1}{4} < \frac{\left(x + 1\right)^{2}}{3} \\ \displaystyle y + \frac{1}{2} > \frac{13 \left(x + 1\right)^{2}}{27} \end{cases} \\ 11 & \begin{cases} \displaystyle y + \frac{4}{3} < \frac{\left(x - 2\right)^{2}}{4} \\ \displaystyle y + \frac{7}{3} > \frac{13 \left(x - 2\right)^{2}}{36} \end{cases} \\ 12 & \begin{cases} \displaystyle y + \frac{31}{12} < \left(x - 2\right)^{2} \\ \displaystyle y + \frac{17}{6} > \frac{13 \left(x - 2\right)^{2}}{9} \end{cases} \\ 13 & \begin{cases} \displaystyle y + \frac{1}{6} < \frac{\left(x + 2\right)^{2}}{2} \\ \displaystyle y + \frac{2}{3} > \frac{13 \left(x + 2\right)^{2}}{18} \end{cases} \\ 14 & \begin{cases} \displaystyle y + \frac{3}{4} < \frac{\left(x - 1\right)^{2}}{3} \\ \displaystyle y + \frac{3}{2} > \frac{13 \left(x - 1\right)^{2}}{27} \end{cases} \\ 15 & \begin{cases} \displaystyle y + \frac{3}{4} < \frac{\left(x + 1\right)^{2}}{3} \\ \displaystyle y + \frac{3}{2} > \frac{13 \left(x + 1\right)^{2}}{27} \end{cases} \\ 16 & \begin{cases} \displaystyle y + \frac{19}{6} < \frac{\left(x - 1\right)^{2}}{2} \\ \displaystyle y + \frac{11}{3} > \frac{13 \left(x - 1\right)^{2}}{18} \end{cases} \\ 17 & \begin{cases} \displaystyle y + \frac{4}{3} < \frac{\left(x - 1\right)^{2}}{4} \\ \displaystyle y + \frac{7}{3} > \frac{13 \left(x - 1\right)^{2}}{36} \end{cases} \\ 18 & \begin{cases} \displaystyle y + \frac{15}{4} < \frac{\left(x - 1\right)^{2}}{3} \\ \displaystyle y + \frac{9}{2} > \frac{13 \left(x - 1\right)^{2}}{27} \end{cases} \\ 19 & \begin{cases} \displaystyle y - \frac{17}{12} < \left(x - 1\right)^{2} \\ \displaystyle y - \frac{7}{6} > \frac{13 \left(x - 1\right)^{2}}{9} \end{cases} \\ 20 & \begin{cases} \displaystyle y + \frac{13}{6} < \frac{\left(x + 1\right)^{2}}{2} \\ \displaystyle y + \frac{8}{3} > \frac{13 \left(x + 1\right)^{2}}{18} \end{cases} \\ 21 & \begin{cases} \displaystyle y + \frac{3}{4} < \frac{\left(x - 2\right)^{2}}{3} \\ \displaystyle y + \frac{3}{2} > \frac{13 \left(x - 2\right)^{2}}{27} \end{cases} \\ 22 & \begin{cases} \displaystyle y + \frac{11}{4} < \frac{\left(x + 1\right)^{2}}{3} \\ \displaystyle y + \frac{7}{2} > \frac{13 \left(x + 1\right)^{2}}{27} \end{cases} \\ 23 & \begin{cases} \displaystyle y + \frac{11}{4} < \frac{\left(x - 2\right)^{2}}{3} \\ \displaystyle y + \frac{7}{2} > \frac{13 \left(x - 2\right)^{2}}{27} \end{cases} \\ 24 & \begin{cases} \displaystyle y + \frac{1}{6} < \frac{\left(x + 1\right)^{2}}{2} \\ \displaystyle y + \frac{2}{3} > \frac{13 \left(x + 1\right)^{2}}{18} \end{cases} \\ 25 & \begin{cases} \displaystyle y + \frac{11}{4} < \frac{\left(x + 2\right)^{2}}{3} \\ \displaystyle y + \frac{7}{2} > \frac{13 \left(x + 2\right)^{2}}{27} \end{cases} \\ 26 & \begin{cases} \displaystyle y - \frac{1}{4} < \frac{\left(x + 2\right)^{2}}{3} \\ \displaystyle y + \frac{1}{2} > \frac{13 \left(x + 2\right)^{2}}{27} \end{cases} \\ 27 & \begin{cases} \displaystyle y - \frac{17}{12} < \left(x - 2\right)^{2} \\ \displaystyle y - \frac{7}{6} > \frac{13 \left(x - 2\right)^{2}}{9} \end{cases} \\ 28 & \begin{cases} \displaystyle y + \frac{15}{4} < \frac{\left(x - 2\right)^{2}}{3} \\ \displaystyle y + \frac{9}{2} > \frac{13 \left(x - 2\right)^{2}}{27} \end{cases} \\ 29 & \begin{cases} \displaystyle y + \frac{4}{3} < \frac{\left(x + 2\right)^{2}}{4} \\ \displaystyle y + \frac{7}{3} > \frac{13 \left(x + 2\right)^{2}}{36} \end{cases} \\ 30 & \begin{cases} \displaystyle y - \frac{5}{12} < \left(x - 1\right)^{2} \\ \displaystyle y - \frac{1}{6} > \frac{13 \left(x - 1\right)^{2}}{9} \end{cases} \\ 31 & \begin{cases} \displaystyle y + \frac{10}{3} < \frac{\left(x + 1\right)^{2}}{4} \\ \displaystyle y + \frac{13}{3} > \frac{13 \left(x + 1\right)^{2}}{36} \end{cases} \\ 32 & \begin{cases} \displaystyle y + \frac{19}{12} < \left(x + 2\right)^{2} \\ \displaystyle y + \frac{11}{6} > \frac{13 \left(x + 2\right)^{2}}{9} \end{cases} \\ 33 & \begin{cases} \displaystyle y + \frac{3}{4} < \frac{\left(x + 2\right)^{2}}{3} \\ \displaystyle y + \frac{3}{2} > \frac{13 \left(x + 2\right)^{2}}{27} \end{cases} \\ 34 & \begin{cases} \displaystyle y + \frac{13}{3} < \frac{\left(x + 2\right)^{2}}{4} \\ \displaystyle y + \frac{16}{3} > \frac{13 \left(x + 2\right)^{2}}{36} \end{cases} \\ 35 & \begin{cases} \displaystyle y - \frac{5}{12} < \left(x + 1\right)^{2} \\ \displaystyle y - \frac{1}{6} > \frac{13 \left(x + 1\right)^{2}}{9} \end{cases} \\ 36 & \begin{cases} \displaystyle y + \frac{1}{3} < \frac{\left(x + 1\right)^{2}}{4} \\ \displaystyle y + \frac{4}{3} > \frac{13 \left(x + 1\right)^{2}}{36} \end{cases} \\ 37 & \begin{cases} \displaystyle y - \frac{5}{6} < \frac{\left(x - 2\right)^{2}}{2} \\ \displaystyle y - \frac{1}{3} > \frac{13 \left(x - 2\right)^{2}}{18} \end{cases} \\ 38 & \begin{cases} \displaystyle y + \frac{13}{6} < \frac{\left(x - 2\right)^{2}}{2} \\ \displaystyle y + \frac{8}{3} > \frac{13 \left(x - 2\right)^{2}}{18} \end{cases} \\ 39 & \begin{cases} \displaystyle y + \frac{13}{3} < \frac{\left(x - 2\right)^{2}}{4} \\ \displaystyle y + \frac{16}{3} > \frac{13 \left(x - 2\right)^{2}}{36} \end{cases} \\ 40 & \begin{cases} \displaystyle y + \frac{11}{4} < \frac{\left(x - 1\right)^{2}}{3} \\ \displaystyle y + \frac{7}{2} > \frac{13 \left(x - 1\right)^{2}}{27} \end{cases} \\ 41 & \begin{cases} \displaystyle y + \frac{10}{3} < \frac{\left(x - 1\right)^{2}}{4} \\ \displaystyle y + \frac{13}{3} > \frac{13 \left(x - 1\right)^{2}}{36} \end{cases} \\ 42 & \begin{cases} \displaystyle y - \frac{1}{4} < \frac{\left(x - 1\right)^{2}}{3} \\ \displaystyle y + \frac{1}{2} > \frac{13 \left(x - 1\right)^{2}}{27} \end{cases} \\ \hline \end{array} \]

  • No Geogebra, entre a inequação e configure-a para que a área seja preenchida em vermelho.

2.5 Orelhas

  • As orelhas são os ramos de uma hipérbole de eixo real horizontal, de excentricidade \(11/10\), cujos vértices são os dois pontos do círculo do rosto que têm a coordenada \(y\) igual ao valor abaixo (veja o seu número \(n\) nesta lista).

    1. \(\displaystyle \quad y = -2\)

    2. \(\displaystyle \quad y = -2\)

    3. \(\displaystyle \quad y = 2\)

    4. \(\displaystyle \quad y = -1\)

    5. \(\displaystyle \quad y = 1\)

    6. \(\displaystyle \quad y = 1\)

    7. \(\displaystyle \quad y = -2\)

    8. \(\displaystyle \quad y = 2\)

    9. \(\displaystyle \quad y = 2\)

    10. \(\displaystyle \quad y = 2\)

    11. \(\displaystyle \quad y = 1\)

    12. \(\displaystyle \quad y = -2\)

    13. \(\displaystyle \quad y = 1\)

    14. \(\displaystyle \quad y = 1\)

    15. \(\displaystyle \quad y = 1\)

    16. \(\displaystyle \quad y = -2\)

    17. \(\displaystyle \quad y = 1\)

    18. \(\displaystyle \quad y = -2\)

    19. \(\displaystyle \quad y = 2\)

    20. \(\displaystyle \quad y = -1\)

    21. \(\displaystyle \quad y = 1\)

    22. \(\displaystyle \quad y = -1\)

    23. \(\displaystyle \quad y = -1\)

    24. \(\displaystyle \quad y = 1\)

    25. \(\displaystyle \quad y = -1\)

    26. \(\displaystyle \quad y = 2\)

    27. \(\displaystyle \quad y = 2\)

    28. \(\displaystyle \quad y = -2\)

    29. \(\displaystyle \quad y = 1\)

    30. \(\displaystyle \quad y = 1\)

    31. \(\displaystyle \quad y = -1\)

    32. \(\displaystyle \quad y = -1\)

    33. \(\displaystyle \quad y = 1\)

    34. \(\displaystyle \quad y = -2\)

    35. \(\displaystyle \quad y = 1\)

    36. \(\displaystyle \quad y = 2\)

    37. \(\displaystyle \quad y = 2\)

    38. \(\displaystyle \quad y = -1\)

    39. \(\displaystyle \quad y = -2\)

    40. \(\displaystyle \quad y = -1\)

    41. \(\displaystyle \quad y = -1\)

    42. \(\displaystyle \quad y = 2\)

  • Ache a equação canônica desta hipérbole.

  • Vamos resolver o item 1. Os passos são os mesmos para todos os itens; só mudam os valores.

  • A equação canônica de uma hipérbole de eixo real horizontal tem a forma

    \[ \frac{(x - h)^2}{a^2} - \frac{(y - k)^2}{b^2} = 1 \]

  • Aqui, o ponto \((h, k)\) é o centro, que não foi dado.

  • Mas, se você prestar atenção, vai notar que os vértices da hipérbole estão na mesma horizontal \((y = -2)\) que o centro do rosto.

  • Então, como as orelhas são simétricas em relação ao centro do rosto, o centro da hipérbole é igual ao centro do círculo do rosto: \((h, k) = (-1, -2)\).

  • A excentricidade de uma hipérbole é \(e = c/a\). O enunciado diz que \(e = 11/10\).

  • Daí, \(c/a = 11/10\), o que equivale a dizer que \(c = 11a/10\).

  • Na hipérbole, \(c^2 = a^2 + b^2\), o que equivale a dizer que \(b^2 = c^2 - a^2\).

  • Isto equivale a dizer que \(b^2 = \frac{121a^2}{100} - a^2 = \frac{21a^2}{100}\).

  • Levando em conta as informações acima, a hipérbole que procuramos é

    \[ \frac{(x + 1)^2}{a^2} - \frac{(y + 2)^2}{21a^2 / 100} = 1 \]

  • Para descobrir o valor de \(a\), podemos usar o fato de que os vértices da hipérbole também pertencem ao círculo do rosto.

  • Ou seja, os pontos \((-4, -2)\) e \((2, -2)\) são os vértices da hipérbole.

  • Usando o segundo vértice, poderíamos substituir \(x\) por \(2\) e \(y\) por \(-2\) e resolver a equação para achar o valor de \(a\).

  • Mas nem precisamos fazer isto. O valor de \(a\) é justamente a distância entre o centro e o vértice da hipérbole, e acabamos de observar que esta distância é o raio do círculo do rosto: ou seja, \(a = 3\).

  • A equação da hipérbole, fica, então

    \[ \frac{(x + 1)^2}{9} - \frac{(y + 2)^2}{189 / 100} = 1 \]

As respostas para todos os itens são:

\[ \begin{array}{r|l} \hline 1 & \displaystyle \frac{\left(x + 1\right)^{2}}{9} - \frac{\left(y + 2\right)^{2}}{\frac{189}{100}} = 1 \\ 2 & \displaystyle \frac{\left(x + 1\right)^{2}}{1} - \frac{\left(y + 2\right)^{2}}{\frac{21}{100}} = 1 \\ 3 & \displaystyle \frac{\left(x - 2\right)^{2}}{9} - \frac{\left(y - 2\right)^{2}}{\frac{189}{100}} = 1 \\ 4 & \displaystyle \frac{\left(x - 1\right)^{2}}{1} - \frac{\left(y + 1\right)^{2}}{\frac{21}{100}} = 1 \\ 5 & \displaystyle \frac{\left(x - 2\right)^{2}}{4} - \frac{\left(y - 1\right)^{2}}{\frac{21}{25}} = 1 \\ 6 & \displaystyle \frac{\left(x - 1\right)^{2}}{4} - \frac{\left(y - 1\right)^{2}}{\frac{21}{25}} = 1 \\ 7 & \displaystyle \frac{\left(x + 2\right)^{2}}{9} - \frac{\left(y + 2\right)^{2}}{\frac{189}{100}} = 1 \\ 8 & \displaystyle \frac{\left(x - 2\right)^{2}}{16} - \frac{\left(y - 2\right)^{2}}{\frac{84}{25}} = 1 \\ 9 & \displaystyle \frac{\left(x + 2\right)^{2}}{1} - \frac{\left(y - 2\right)^{2}}{\frac{21}{100}} = 1 \\ 10 & \displaystyle \frac{\left(x + 1\right)^{2}}{9} - \frac{\left(y - 2\right)^{2}}{\frac{189}{100}} = 1 \\ 11 & \displaystyle \frac{\left(x - 2\right)^{2}}{16} - \frac{\left(y - 1\right)^{2}}{\frac{84}{25}} = 1 \\ 12 & \displaystyle \frac{\left(x - 2\right)^{2}}{1} - \frac{\left(y + 2\right)^{2}}{\frac{21}{100}} = 1 \\ 13 & \displaystyle \frac{\left(x + 2\right)^{2}}{4} - \frac{\left(y - 1\right)^{2}}{\frac{21}{25}} = 1 \\ 14 & \displaystyle \frac{\left(x - 1\right)^{2}}{9} - \frac{\left(y - 1\right)^{2}}{\frac{189}{100}} = 1 \\ 15 & \displaystyle \frac{\left(x + 1\right)^{2}}{9} - \frac{\left(y - 1\right)^{2}}{\frac{189}{100}} = 1 \\ 16 & \displaystyle \frac{\left(x - 1\right)^{2}}{4} - \frac{\left(y + 2\right)^{2}}{\frac{21}{25}} = 1 \\ 17 & \displaystyle \frac{\left(x - 1\right)^{2}}{16} - \frac{\left(y - 1\right)^{2}}{\frac{84}{25}} = 1 \\ 18 & \displaystyle \frac{\left(x - 1\right)^{2}}{9} - \frac{\left(y + 2\right)^{2}}{\frac{189}{100}} = 1 \\ 19 & \displaystyle \frac{\left(x - 1\right)^{2}}{1} - \frac{\left(y - 2\right)^{2}}{\frac{21}{100}} = 1 \\ 20 & \displaystyle \frac{\left(x + 1\right)^{2}}{4} - \frac{\left(y + 1\right)^{2}}{\frac{21}{25}} = 1 \\ 21 & \displaystyle \frac{\left(x - 2\right)^{2}}{9} - \frac{\left(y - 1\right)^{2}}{\frac{189}{100}} = 1 \\ 22 & \displaystyle \frac{\left(x + 1\right)^{2}}{9} - \frac{\left(y + 1\right)^{2}}{\frac{189}{100}} = 1 \\ 23 & \displaystyle \frac{\left(x - 2\right)^{2}}{9} - \frac{\left(y + 1\right)^{2}}{\frac{189}{100}} = 1 \\ 24 & \displaystyle \frac{\left(x + 1\right)^{2}}{4} - \frac{\left(y - 1\right)^{2}}{\frac{21}{25}} = 1 \\ 25 & \displaystyle \frac{\left(x + 2\right)^{2}}{9} - \frac{\left(y + 1\right)^{2}}{\frac{189}{100}} = 1 \\ 26 & \displaystyle \frac{\left(x + 2\right)^{2}}{9} - \frac{\left(y - 2\right)^{2}}{\frac{189}{100}} = 1 \\ 27 & \displaystyle \frac{\left(x - 2\right)^{2}}{1} - \frac{\left(y - 2\right)^{2}}{\frac{21}{100}} = 1 \\ 28 & \displaystyle \frac{\left(x - 2\right)^{2}}{9} - \frac{\left(y + 2\right)^{2}}{\frac{189}{100}} = 1 \\ 29 & \displaystyle \frac{\left(x + 2\right)^{2}}{16} - \frac{\left(y - 1\right)^{2}}{\frac{84}{25}} = 1 \\ 30 & \displaystyle \frac{\left(x - 1\right)^{2}}{1} - \frac{\left(y - 1\right)^{2}}{\frac{21}{100}} = 1 \\ 31 & \displaystyle \frac{\left(x + 1\right)^{2}}{16} - \frac{\left(y + 1\right)^{2}}{\frac{84}{25}} = 1 \\ 32 & \displaystyle \frac{\left(x + 2\right)^{2}}{1} - \frac{\left(y + 1\right)^{2}}{\frac{21}{100}} = 1 \\ 33 & \displaystyle \frac{\left(x + 2\right)^{2}}{9} - \frac{\left(y - 1\right)^{2}}{\frac{189}{100}} = 1 \\ 34 & \displaystyle \frac{\left(x + 2\right)^{2}}{16} - \frac{\left(y + 2\right)^{2}}{\frac{84}{25}} = 1 \\ 35 & \displaystyle \frac{\left(x + 1\right)^{2}}{1} - \frac{\left(y - 1\right)^{2}}{\frac{21}{100}} = 1 \\ 36 & \displaystyle \frac{\left(x + 1\right)^{2}}{16} - \frac{\left(y - 2\right)^{2}}{\frac{84}{25}} = 1 \\ 37 & \displaystyle \frac{\left(x - 2\right)^{2}}{4} - \frac{\left(y - 2\right)^{2}}{\frac{21}{25}} = 1 \\ 38 & \displaystyle \frac{\left(x - 2\right)^{2}}{4} - \frac{\left(y + 1\right)^{2}}{\frac{21}{25}} = 1 \\ 39 & \displaystyle \frac{\left(x - 2\right)^{2}}{16} - \frac{\left(y + 2\right)^{2}}{\frac{84}{25}} = 1 \\ 40 & \displaystyle \frac{\left(x - 1\right)^{2}}{9} - \frac{\left(y + 1\right)^{2}}{\frac{189}{100}} = 1 \\ 41 & \displaystyle \frac{\left(x - 1\right)^{2}}{16} - \frac{\left(y + 1\right)^{2}}{\frac{84}{25}} = 1 \\ 42 & \displaystyle \frac{\left(x - 1\right)^{2}}{9} - \frac{\left(y - 2\right)^{2}}{\frac{189}{100}} = 1 \\ \hline \end{array} \]

  • Escreva uma inequação que represente a região das orelhas que está preenchida em rosa na figura. A distância \(d\) entre o centro do rosto e a borda vertical de cada orelha é a dada abaixo (veja o seu número \(n\) nesta lista).

    1. \(\displaystyle \quad d = \frac{27}{8}\)

    2. \(\displaystyle \quad d = \frac{9}{8}\)

    3. \(\displaystyle \quad d = \frac{27}{8}\)

    4. \(\displaystyle \quad d = \frac{9}{8}\)

    5. \(\displaystyle \quad d = \frac{9}{4}\)

    6. \(\displaystyle \quad d = \frac{9}{4}\)

    7. \(\displaystyle \quad d = \frac{27}{8}\)

    8. \(\displaystyle \quad d = \frac{9}{2}\)

    9. \(\displaystyle \quad d = \frac{9}{8}\)

    10. \(\displaystyle \quad d = \frac{27}{8}\)

    11. \(\displaystyle \quad d = \frac{9}{2}\)

    12. \(\displaystyle \quad d = \frac{9}{8}\)

    13. \(\displaystyle \quad d = \frac{9}{4}\)

    14. \(\displaystyle \quad d = \frac{27}{8}\)

    15. \(\displaystyle \quad d = \frac{27}{8}\)

    16. \(\displaystyle \quad d = \frac{9}{4}\)

    17. \(\displaystyle \quad d = \frac{9}{2}\)

    18. \(\displaystyle \quad d = \frac{27}{8}\)

    19. \(\displaystyle \quad d = \frac{9}{8}\)

    20. \(\displaystyle \quad d = \frac{9}{4}\)

    21. \(\displaystyle \quad d = \frac{27}{8}\)

    22. \(\displaystyle \quad d = \frac{27}{8}\)

    23. \(\displaystyle \quad d = \frac{27}{8}\)

    24. \(\displaystyle \quad d = \frac{9}{4}\)

    25. \(\displaystyle \quad d = \frac{27}{8}\)

    26. \(\displaystyle \quad d = \frac{27}{8}\)

    27. \(\displaystyle \quad d = \frac{9}{8}\)

    28. \(\displaystyle \quad d = \frac{27}{8}\)

    29. \(\displaystyle \quad d = \frac{9}{2}\)

    30. \(\displaystyle \quad d = \frac{9}{8}\)

    31. \(\displaystyle \quad d = \frac{9}{2}\)

    32. \(\displaystyle \quad d = \frac{9}{8}\)

    33. \(\displaystyle \quad d = \frac{27}{8}\)

    34. \(\displaystyle \quad d = \frac{9}{2}\)

    35. \(\displaystyle \quad d = \frac{9}{8}\)

    36. \(\displaystyle \quad d = \frac{9}{2}\)

    37. \(\displaystyle \quad d = \frac{9}{4}\)

    38. \(\displaystyle \quad d = \frac{9}{4}\)

    39. \(\displaystyle \quad d = \frac{9}{2}\)

    40. \(\displaystyle \quad d = \frac{27}{8}\)

    41. \(\displaystyle \quad d = \frac{9}{2}\)

    42. \(\displaystyle \quad d = \frac{27}{8}\)

  • Vamos resolver o item 1. Os passos são os mesmos para todos os itens; só mudam os valores.

  • Lembrando que o centro do círculo tem \(x = -1\), os limites das orelhas são as duas retas verticais

    \[x = -1 - 27/8 = -35/8\]

    e

    \[x = -1 + 27/8 = 19/8\]

  • O capítulo \(10\) do livro diz que os pontos que estão nas mesmas regiões que os focos da hipérbole (ou seja, nas orelhas) satisfazem a inequação

    \[ \frac{(x + 1)^2}{9} - \frac{(y + 2)^2}{189 / 100} > 1 \]

  • Assim, a parte sombreada das orelhas corresponde aos pontos que satisfazem o sistema de inequações

    \[ \begin{cases} \displaystyle \frac{(x + 1)^2}{9} - \frac{(y + 2)^2}{189 / 100} > 1 \\ \displaystyle x > \frac{-35}{8} \\ \displaystyle x < \frac{19}{8} \end{cases} \]

As respostas para todos os itens são:

\[ \begin{array}{r|l} \hline 1 & \begin{cases} \displaystyle \frac{\left(x + 1\right)^{2}}{9} - \frac{\left(y + 2\right)^{2}}{\frac{189}{100}} > 1 \\ \displaystyle x > - \frac{35}{8} \\ \displaystyle x < \frac{19}{8} \end{cases} \\ 2 & \begin{cases} \displaystyle \frac{\left(x + 1\right)^{2}}{1} - \frac{\left(y + 2\right)^{2}}{\frac{21}{100}} > 1 \\ \displaystyle x > - \frac{17}{8} \\ \displaystyle x < \frac{1}{8} \end{cases} \\ 3 & \begin{cases} \displaystyle \frac{\left(x - 2\right)^{2}}{9} - \frac{\left(y - 2\right)^{2}}{\frac{189}{100}} > 1 \\ \displaystyle x > - \frac{11}{8} \\ \displaystyle x < \frac{43}{8} \end{cases} \\ 4 & \begin{cases} \displaystyle \frac{\left(x - 1\right)^{2}}{1} - \frac{\left(y + 1\right)^{2}}{\frac{21}{100}} > 1 \\ \displaystyle x > - \frac{1}{8} \\ \displaystyle x < \frac{17}{8} \end{cases} \\ 5 & \begin{cases} \displaystyle \frac{\left(x - 2\right)^{2}}{4} - \frac{\left(y - 1\right)^{2}}{\frac{21}{25}} > 1 \\ \displaystyle x > - \frac{1}{4} \\ \displaystyle x < \frac{17}{4} \end{cases} \\ 6 & \begin{cases} \displaystyle \frac{\left(x - 1\right)^{2}}{4} - \frac{\left(y - 1\right)^{2}}{\frac{21}{25}} > 1 \\ \displaystyle x > - \frac{5}{4} \\ \displaystyle x < \frac{13}{4} \end{cases} \\ 7 & \begin{cases} \displaystyle \frac{\left(x + 2\right)^{2}}{9} - \frac{\left(y + 2\right)^{2}}{\frac{189}{100}} > 1 \\ \displaystyle x > - \frac{43}{8} \\ \displaystyle x < \frac{11}{8} \end{cases} \\ 8 & \begin{cases} \displaystyle \frac{\left(x - 2\right)^{2}}{16} - \frac{\left(y - 2\right)^{2}}{\frac{84}{25}} > 1 \\ \displaystyle x > - \frac{5}{2} \\ \displaystyle x < \frac{13}{2} \end{cases} \\ 9 & \begin{cases} \displaystyle \frac{\left(x + 2\right)^{2}}{1} - \frac{\left(y - 2\right)^{2}}{\frac{21}{100}} > 1 \\ \displaystyle x > - \frac{25}{8} \\ \displaystyle x < - \frac{7}{8} \end{cases} \\ 10 & \begin{cases} \displaystyle \frac{\left(x + 1\right)^{2}}{9} - \frac{\left(y - 2\right)^{2}}{\frac{189}{100}} > 1 \\ \displaystyle x > - \frac{35}{8} \\ \displaystyle x < \frac{19}{8} \end{cases} \\ 11 & \begin{cases} \displaystyle \frac{\left(x - 2\right)^{2}}{16} - \frac{\left(y - 1\right)^{2}}{\frac{84}{25}} > 1 \\ \displaystyle x > - \frac{5}{2} \\ \displaystyle x < \frac{13}{2} \end{cases} \\ 12 & \begin{cases} \displaystyle \frac{\left(x - 2\right)^{2}}{1} - \frac{\left(y + 2\right)^{2}}{\frac{21}{100}} > 1 \\ \displaystyle x > \frac{7}{8} \\ \displaystyle x < \frac{25}{8} \end{cases} \\ 13 & \begin{cases} \displaystyle \frac{\left(x + 2\right)^{2}}{4} - \frac{\left(y - 1\right)^{2}}{\frac{21}{25}} > 1 \\ \displaystyle x > - \frac{17}{4} \\ \displaystyle x < \frac{1}{4} \end{cases} \\ 14 & \begin{cases} \displaystyle \frac{\left(x - 1\right)^{2}}{9} - \frac{\left(y - 1\right)^{2}}{\frac{189}{100}} > 1 \\ \displaystyle x > - \frac{19}{8} \\ \displaystyle x < \frac{35}{8} \end{cases} \\ 15 & \begin{cases} \displaystyle \frac{\left(x + 1\right)^{2}}{9} - \frac{\left(y - 1\right)^{2}}{\frac{189}{100}} > 1 \\ \displaystyle x > - \frac{35}{8} \\ \displaystyle x < \frac{19}{8} \end{cases} \\ 16 & \begin{cases} \displaystyle \frac{\left(x - 1\right)^{2}}{4} - \frac{\left(y + 2\right)^{2}}{\frac{21}{25}} > 1 \\ \displaystyle x > - \frac{5}{4} \\ \displaystyle x < \frac{13}{4} \end{cases} \\ 17 & \begin{cases} \displaystyle \frac{\left(x - 1\right)^{2}}{16} - \frac{\left(y - 1\right)^{2}}{\frac{84}{25}} > 1 \\ \displaystyle x > - \frac{7}{2} \\ \displaystyle x < \frac{11}{2} \end{cases} \\ 18 & \begin{cases} \displaystyle \frac{\left(x - 1\right)^{2}}{9} - \frac{\left(y + 2\right)^{2}}{\frac{189}{100}} > 1 \\ \displaystyle x > - \frac{19}{8} \\ \displaystyle x < \frac{35}{8} \end{cases} \\ 19 & \begin{cases} \displaystyle \frac{\left(x - 1\right)^{2}}{1} - \frac{\left(y - 2\right)^{2}}{\frac{21}{100}} > 1 \\ \displaystyle x > - \frac{1}{8} \\ \displaystyle x < \frac{17}{8} \end{cases} \\ 20 & \begin{cases} \displaystyle \frac{\left(x + 1\right)^{2}}{4} - \frac{\left(y + 1\right)^{2}}{\frac{21}{25}} > 1 \\ \displaystyle x > - \frac{13}{4} \\ \displaystyle x < \frac{5}{4} \end{cases} \\ 21 & \begin{cases} \displaystyle \frac{\left(x - 2\right)^{2}}{9} - \frac{\left(y - 1\right)^{2}}{\frac{189}{100}} > 1 \\ \displaystyle x > - \frac{11}{8} \\ \displaystyle x < \frac{43}{8} \end{cases} \\ 22 & \begin{cases} \displaystyle \frac{\left(x + 1\right)^{2}}{9} - \frac{\left(y + 1\right)^{2}}{\frac{189}{100}} > 1 \\ \displaystyle x > - \frac{35}{8} \\ \displaystyle x < \frac{19}{8} \end{cases} \\ 23 & \begin{cases} \displaystyle \frac{\left(x - 2\right)^{2}}{9} - \frac{\left(y + 1\right)^{2}}{\frac{189}{100}} > 1 \\ \displaystyle x > - \frac{11}{8} \\ \displaystyle x < \frac{43}{8} \end{cases} \\ 24 & \begin{cases} \displaystyle \frac{\left(x + 1\right)^{2}}{4} - \frac{\left(y - 1\right)^{2}}{\frac{21}{25}} > 1 \\ \displaystyle x > - \frac{13}{4} \\ \displaystyle x < \frac{5}{4} \end{cases} \\ 25 & \begin{cases} \displaystyle \frac{\left(x + 2\right)^{2}}{9} - \frac{\left(y + 1\right)^{2}}{\frac{189}{100}} > 1 \\ \displaystyle x > - \frac{43}{8} \\ \displaystyle x < \frac{11}{8} \end{cases} \\ 26 & \begin{cases} \displaystyle \frac{\left(x + 2\right)^{2}}{9} - \frac{\left(y - 2\right)^{2}}{\frac{189}{100}} > 1 \\ \displaystyle x > - \frac{43}{8} \\ \displaystyle x < \frac{11}{8} \end{cases} \\ 27 & \begin{cases} \displaystyle \frac{\left(x - 2\right)^{2}}{1} - \frac{\left(y - 2\right)^{2}}{\frac{21}{100}} > 1 \\ \displaystyle x > \frac{7}{8} \\ \displaystyle x < \frac{25}{8} \end{cases} \\ 28 & \begin{cases} \displaystyle \frac{\left(x - 2\right)^{2}}{9} - \frac{\left(y + 2\right)^{2}}{\frac{189}{100}} > 1 \\ \displaystyle x > - \frac{11}{8} \\ \displaystyle x < \frac{43}{8} \end{cases} \\ 29 & \begin{cases} \displaystyle \frac{\left(x + 2\right)^{2}}{16} - \frac{\left(y - 1\right)^{2}}{\frac{84}{25}} > 1 \\ \displaystyle x > - \frac{13}{2} \\ \displaystyle x < \frac{5}{2} \end{cases} \\ 30 & \begin{cases} \displaystyle \frac{\left(x - 1\right)^{2}}{1} - \frac{\left(y - 1\right)^{2}}{\frac{21}{100}} > 1 \\ \displaystyle x > - \frac{1}{8} \\ \displaystyle x < \frac{17}{8} \end{cases} \\ 31 & \begin{cases} \displaystyle \frac{\left(x + 1\right)^{2}}{16} - \frac{\left(y + 1\right)^{2}}{\frac{84}{25}} > 1 \\ \displaystyle x > - \frac{11}{2} \\ \displaystyle x < \frac{7}{2} \end{cases} \\ 32 & \begin{cases} \displaystyle \frac{\left(x + 2\right)^{2}}{1} - \frac{\left(y + 1\right)^{2}}{\frac{21}{100}} > 1 \\ \displaystyle x > - \frac{25}{8} \\ \displaystyle x < - \frac{7}{8} \end{cases} \\ 33 & \begin{cases} \displaystyle \frac{\left(x + 2\right)^{2}}{9} - \frac{\left(y - 1\right)^{2}}{\frac{189}{100}} > 1 \\ \displaystyle x > - \frac{43}{8} \\ \displaystyle x < \frac{11}{8} \end{cases} \\ 34 & \begin{cases} \displaystyle \frac{\left(x + 2\right)^{2}}{16} - \frac{\left(y + 2\right)^{2}}{\frac{84}{25}} > 1 \\ \displaystyle x > - \frac{13}{2} \\ \displaystyle x < \frac{5}{2} \end{cases} \\ 35 & \begin{cases} \displaystyle \frac{\left(x + 1\right)^{2}}{1} - \frac{\left(y - 1\right)^{2}}{\frac{21}{100}} > 1 \\ \displaystyle x > - \frac{17}{8} \\ \displaystyle x < \frac{1}{8} \end{cases} \\ 36 & \begin{cases} \displaystyle \frac{\left(x + 1\right)^{2}}{16} - \frac{\left(y - 2\right)^{2}}{\frac{84}{25}} > 1 \\ \displaystyle x > - \frac{11}{2} \\ \displaystyle x < \frac{7}{2} \end{cases} \\ 37 & \begin{cases} \displaystyle \frac{\left(x - 2\right)^{2}}{4} - \frac{\left(y - 2\right)^{2}}{\frac{21}{25}} > 1 \\ \displaystyle x > - \frac{1}{4} \\ \displaystyle x < \frac{17}{4} \end{cases} \\ 38 & \begin{cases} \displaystyle \frac{\left(x - 2\right)^{2}}{4} - \frac{\left(y + 1\right)^{2}}{\frac{21}{25}} > 1 \\ \displaystyle x > - \frac{1}{4} \\ \displaystyle x < \frac{17}{4} \end{cases} \\ 39 & \begin{cases} \displaystyle \frac{\left(x - 2\right)^{2}}{16} - \frac{\left(y + 2\right)^{2}}{\frac{84}{25}} > 1 \\ \displaystyle x > - \frac{5}{2} \\ \displaystyle x < \frac{13}{2} \end{cases} \\ 40 & \begin{cases} \displaystyle \frac{\left(x - 1\right)^{2}}{9} - \frac{\left(y + 1\right)^{2}}{\frac{189}{100}} > 1 \\ \displaystyle x > - \frac{19}{8} \\ \displaystyle x < \frac{35}{8} \end{cases} \\ 41 & \begin{cases} \displaystyle \frac{\left(x - 1\right)^{2}}{16} - \frac{\left(y + 1\right)^{2}}{\frac{84}{25}} > 1 \\ \displaystyle x > - \frac{7}{2} \\ \displaystyle x < \frac{11}{2} \end{cases} \\ 42 & \begin{cases} \displaystyle \frac{\left(x - 1\right)^{2}}{9} - \frac{\left(y - 2\right)^{2}}{\frac{189}{100}} > 1 \\ \displaystyle x > - \frac{19}{8} \\ \displaystyle x < \frac{35}{8} \end{cases} \\ \hline \end{array} \]

  • No Geogebra, entre a inequação e configure-a para que a área seja preenchida em rosa.

3 Números dos alunos, por matrícula

matrícula n
119060029 4
122060003 8
122060004 37
122060005 22
122060006 32
122060007 17
122060008 36
122060009 35
122060010 41
122060011 18
122060012 7
122060013 28
122060014 27
122060015 33
122060016 3
122060017 6
122060018 15
122060019 31
122060020 26
122060021 29
122060022 19
122060023 25
122060028 42
122060029 1
122060030 13
122060031 16
122060033 20
122060034 24
122060035 34
122060036 21
122060038 9
122060040 5
122060041 40
215060056 2
220060041 14
221060040 12
221060047 39
622060024 10
622060025 30
622060026 23
622060027 38
822060037 11
LS0tCnRpdGxlOiAnTGlzdGEgMjogZW1vamkgY29tIGPDtG5pY2FzOiByZXNwb3N0YXMnCmF1dGhvcjogJ2ZuYXVmZWwnCmVtYWlsOiAnaHR0cHM6Ly9mbmF1ZmVsLmdpdGh1Yi5pby8nCmRhdGU6ICcgICAodi4gYHIgZm9ybWF0KFN5cy5EYXRlKCksICIlZC8lbS8lWSIpYCknCmxhbmc6ICdwdC1icicKCm91dHB1dDoKICAjIFRvIGluc3RhbGwgdGhlc2Ugb3V0cHV0IGZvcm1hdHMsIHJ1bgogICMgICBpbnN0YWxsLnBhY2thZ2VzKCJkZXZ0b29scyIpCiAgIyAgIGRldnRvb2xzOjppbnN0YWxsX2dpdGh1YigiZm5hdWZlbC9mbmF1ZmVsUm1kIikKICBmbmF1ZmVsUm1kOjpodG1sX3JlcG9ydDoKICAgIFtdCi0tLQoKYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0V9CiMgVGhlIG5leHQgY29tbWFuZCBjb25maWd1cmVzIE1BTlkgdGhpbmdzIGFuZCBsb2FkcyBxdWl0ZSBhIGZldyBwYWNrYWdlcy4KIwojIElmIHlvdSB3YW50IHRvIHNlZSB3aGF0J3MgYmVpbmcgZG9uZSwgZXhlY3V0ZQojCiMgICBjYXQoCiMgICAgIHN5c3RlbS5maWxlKAojICAgICAgICJybWFya2Rvd24vcmVzb3VyY2VzL1IvX2NvbW1vbl9yZXBvcnQuUiIsCiMgICAgICAgcGFja2FnZSA9ICJmbmF1ZmVsUm1kIgojICAgICApCiMgICApCiMKIyB0byBmaW5kIG91dCB0aGUgbG9jYXRpb24gb2YgdGhlIGZpbGUuIFRoZW4gb3BlbiB0aGUgZmlsZS4KIwojIElmIHlvdSB3YW50IHRvIGNoYW5nZSB0aGUgY29uZmlndXJhdGlvbiwgY29weSB0aGUgZmlsZSwgZWRpdCBpdCwgYW5kCiMgc291cmNlIGl0IGluc3RlYWQgb2YgdGhlIHBhY2thZ2UgZmlsZS4KIwojIE9yIHNpbXBseSB3cml0ZSB5b3VyIGNvbW1hbmRzIGhlcmUgaW4gdGhpcyBjb2RlIGNodW5rLgoKc291cmNlKAogIHN5c3RlbS5maWxlKAogICAgInJtYXJrZG93bi9yZXNvdXJjZXMvUi9fY29tbW9uX3JlcG9ydC5SIiwKICAgIHBhY2thZ2UgPSAiZm5hdWZlbFJtZCIKICApCikKCmxpYnJhcnkocmV0aWN1bGF0ZSkKc3ltcHkgPC0gaW1wb3J0KCdzeW1weScpCnB5X3J1bl9zdHJpbmcoJ2Zyb20gc3ltcHkgaW1wb3J0IConKQpweV9ydW5fc3RyaW5nKCdpbml0X3ByaW50aW5nKHVzZV9sYXRleCA9IFRydWUpJykKc291cmNlX3B5dGhvbignY29uaWNzLnB5JykKCmxpYnJhcnkoc3ltcHlnbHVlKQoKb3B0c19jaHVuayRzZXQoCiAgZWNobyA9IEZBTFNFCikKCmBgYAoKCiMgSW5zdHJ1w6fDtWVzCgoqIEZpcXVlIMOgIHZvbnRhZGUgcGFyYSBjb25zdWx0YXIgb3MgY29sZWd1aW5oYXMgZSBwYXJhIHVzYXIgcHJvZ3JhbWFzIGNvbW8gbyBHZW9nZWJyYSwgbWFzIFtzb21lbnRlIHNvbHXDp8O1ZXMgKmFuYWzDrXRpY2FzKiBzZXLDo28gYWNlaXRhcyAtLS0gbmFkYSBkZSByZXNwb25kZXIgbm8gb2xow7RtZXRyby5dey5obH0KCiogVW1hIHNvbHXDp8OjbyBhbmFsw610aWNhIMOpIGFxdWVsYSBlbSBxdWUgdm9jw6ogZGV0YWxoYSB0b2RvcyBvcyBwYXNzb3MgaW50ZXJtZWRpw6FyaW9zOiBbbsOjbyB2YWxlIHJlc29sdmVyIHR1ZG8gbm8gR2VvZ2VicmEgZSBhcHJlc2VudGFyIG8gcmVzdWx0YWRvIGZpbmFsOyDDqSBwcmVjaXNvIG1vc3RyYXIgbyBwYXNzby1hLXBhc3NvXXsuaGx9LgoKKiBFbnRyZWd1ZSBbKHZpYSBNb29kbGUpXXsuaGx9IHN1YSByZXNvbHXDp8OjbyBlc2NyaXRhIG5vIGZvcm1hdG8gcXVlIHZvY8OqIHByZWZlcmlyOiBtYW51c2NyaXRvIGVzY2FuZWFkbyBvdSBmb3RvZ3JhZmFkbywgZG9jdW1lbnRvIGdlcmFkbyB2aWEgJFxMYVRlWCQgZXRjLiBPIGltcG9ydGFudGUgw6kgcXVlIGEgcmVzb2x1w6fDo28gZXN0ZWphIGxlZ8OtdmVsLiBbU2Ugdm9jw6ogZm9yIGZvdG9ncmFmYXIgc3VhIHJlc29sdcOnw6NvLCB1c2UgdW0gYXBsaWNhdGl2byBjb21vIFtDbGVhciBTY2FuXShodHRwczovL3BsYXkuZ29vZ2xlLmNvbS9zdG9yZS9hcHBzL2RldGFpbHM/aWQ9Y29tLmluZHltb2JpbGVhcHAuZG9jdW1lbnQuc2Nhbm5lcikgcGFyYSBnZXJhciB1bSByZXN1bHRhZG8gbWVsaG9yLl17LmhsfQoKKiBBbMOpbSBkYSByZXNvbHXDp8OjbyBwb3IgZXNjcml0bywgZW50cmVndWUgdGFtYsOpbSBbKHZpYSBNb29kbGUpXXsuaGx9IHVtIGFycXVpdm8gY29udGVuZG8gdW0gdsOtZGVvIGRlIG5vIG3DoXhpbW8gNSBtaW51dG9zIG9uZGUgdm9jw6ogZXhwbGljYSBlbSBkZXRhbGhlcyBhIHJlc29sdcOnw6NvIGRlIHVtYSBwYXJ0ZSBkYSBzdWEgcXVlc3TDo28uCgoqIEJvbSB0cmFiYWxoby4KCgojIFF1ZXN0w6NvIMO6bmljYTogY29uc3RydWluZG8gdW0gZW1vamkgY29tIGPDtG5pY2FzCgpPcyBkYWRvcyBkYSBzdWEgcXVlc3TDo28gZGVwZW5kZW0gZG8gdmFsb3IgZGUgJG4kIHNvcnRlYWRvIHBhcmEgdm9jw6ouCgpbVmVqYSBvIHNldSB2YWxvciBkZSAkbiQgbmVzdGEgbGlzdGEuXSgjbnVtcykKClZvY8OqIHZhaSBhY2hhciBbZXF1YcOnw7VlcyBkZSBjw7RuaWNhc117LmhsfSBxdWUgc8OjbyBvIHJvc3RvLCBvcyBvbGhvcywgbyBuYXJpeiwgYSBib2NhIGUgYXMgb3JlbGhhcyBkZSB1bSBlbW9qaSBubyAkXG1hdGhiYntSfV4yJC4KCkFsw6ltIGRpc3NvLCB2b2PDqiB2YWkgYWNoYXIgW2luZXF1YcOnw7VlcyBlbnZvbHZlbmRvIGPDtG5pY2FzXXsuaGx9IHF1ZSBjb3JyZXNwb25kZW0gw6BzIMOhcmVhcyBwcmVlbmNoaWRhcyBkYSBib2NhIGUgZGFzIG9yZWxoYXMuCgo6Ojogey5ybWRpbXBvcnRhbnR9CgpFbSB0b2RvcyBvcyBzZXVzIGPDoWxjdWxvcyBlIHJlc3Bvc3RhcywgW3VzZSBmcmHDp8O1ZXMgZSByYWRpY2Fpcy5dey5obH0gCgpbTsOjbyB1c2UgdmFsb3JlcyBudW3DqXJpY29zIGNvbSB2w61yZ3VsYXMgZGVjaW1haXMgZW0gbW9tZW50byBhbGd1bS5dey5obH0KCjo6OgoKYGBge3IgZWNobz1GQUxTRX0Kc2V0LnNlZWQoMTIzNDUpCgptYXRyw61jdWxhIDwtIGMoCiAgMjIwMDYwMDQxLAogIDEyMjA2MDAzMSwKICAxMjIwNjAwMjAsCiAgMTIyMDYwMDEzLAogIDEyMjA2MDAzNCwKICAxMjIwNjAwMjEsCiAgODIyMDYwMDM3LAogIDEyMjA2MDAwNiwKICA2MjIwNjAwMjcsCiAgMjE1MDYwMDU2LAogIDEyMjA2MDAwNSwKICAxMjIwNjAwMDgsCiAgMTIyMDYwMDE3LAogIDEyMjA2MDAxMiwKICA2MjIwNjAwMjQsCiAgMTIyMDYwMDA3LAogIDEyMjA2MDAwMywKICAxMjIwNjAwMDQsCiAgNjIyMDYwMDI1LAogIDEyMjA2MDAyOSwKICAyMjEwNjAwNDAsCiAgMTIyMDYwMDMzLAogIDEyMjA2MDA0MSwKICAxMjIwNjAwMDksCiAgMTIyMDYwMDE2LAogIDEyMjA2MDAzOCwKICAxMjIwNjAwMjgsCiAgMTIyMDYwMDMwLAogIDExOTA2MDAyOSwKICAyMjEwNjAwNDcsCiAgMTIyMDYwMDIzLAogIDEyMjA2MDAxNSwKICAxMjIwNjAwMTAsCiAgMTIyMDYwMDE0LAogIDEyMjA2MDAzNiwKICA2MjIwNjAwMjYsCiAgMTIyMDYwMDE4LAogIDEyMjA2MDAxMSwKICAxMjIwNjAwMTksCiAgMTIyMDYwMDIyLAogIDEyMjA2MDA0MCwKICAxMjIwNjAwMzUgIAopICAKCm5fYWx1bm9zIDwtIGxlbmd0aChtYXRyw61jdWxhKQogIApuIDwtIHNhbXBsZSgxOm5fYWx1bm9zKQoKZGYgPC0gdGliYmxlKG1hdHLDrWN1bGEsIG4pICU+JSAKICBhcnJhbmdlKG4pCgojIFZhbG9yZXMgZGUgeGMsIHljLCByYwpjb29yZHMgPC0gZXhwYW5kX2dyaWQoCiAgeGMgPSBhcy5pbnRlZ2VyKGMoLTIsIC0xLCAxLCAyKSksCiAgeWMgPSBhcy5pbnRlZ2VyKGMoLTIsIC0xLCAxLCAyKSksCiAgcmMgPSBhcy5pbnRlZ2VyKDE6NCkKKSAlPiUgCiAgc2xpY2Vfc2FtcGxlKG4gPSBuX2FsdW5vcykKCmRmIDwtIGNiaW5kKGRmLCBjb29yZHMpCmBgYAoKYGBge3B5dGhvbiBlY2hvPUZBTFNFfQp4LCB5ID0gc3ltYm9scygneCwgeScsIHJlYWwgPSBUcnVlKQp4YywgeWMgPSBzeW1ib2xzKCd4X0MsIHlfQycsIHJlYWwgPSBUcnVlKQpyYyA9IHN5bWJvbHMoJ3JfQycsIHJlYWwgPSBUcnVlLCBwb3NpdGl2ZSA9IFRydWUpCmBgYAoKW117I2ZpZ3VyYX1TZXUgZW1vamkgdmFpIGZpY2FyIGFzc2ltOgoKYGBge3IgZWNobz1GQUxTRSwgb3V0LndpZHRoPSc1MCUnfQprbml0cjo6aW5jbHVkZV9ncmFwaGljcygnZW1vamkucG5nJykKYGBgCgoKIyMgUm9zdG8KCiogTyBbcm9zdG9dey5obH0gw6kgbyBbY8OtcmN1bG8gZGUgZXF1YcOnw6NvIGdlcmFsIGRhZGEgYWJhaXhvXXsuaGx9IChbdmVqYSBvIHNldSBuw7ptZXJvICRuJCBuZXN0YSBsaXN0YV0oI251bXMpKS4KCiogQWNoZSBhIFtlcXVhw6fDo28gY2Fuw7RuaWNhXXsuaGx9IGRlc3RlIGPDrXJjdWxvLgoKICAgIGBgYHtweXRob24gZWNobz1GQUxTRX0KICAgIGVxX2ZhY2UgPSBFcSh4YyoqMiAtIDIqeGMqeCArIHljKioyIC0gMip5Yyp5ICsgeCoqMiArIHkqKjIgLSByYyoqMiwgMCkKICAgIAogICAgZXFzX2ZhY2UgPSBbCiAgICAgIGVxX2ZhY2Uuc3Vicyh7eGM6IHh4LCB5YzogeXksIHJjOiBycn0pIAogICAgICBmb3IgKHh4LCB5eSwgcnIpIAogICAgICBpbiB6aXAoci5kZi54Yywgci5kZi55Yywgci5kZi5yYykKICAgIF0KICAgIGBgYAogICAgCiAgICBgYGB7ciBlY2hvPUZBTFNFfQogICAgbSgKICAgICAgJzEuICRcXGRpc3BsYXlzdHlsZSBcXHF1YWQgJywKICAgICAgJ3t7ZXFzX2ZhY2V9fScsCiAgICAgICckXG5cblxuJywKICAgICkKICAgIGBgYAogICAgCjo6OiB7LnJtZGJveCBsYXRleD0xfQoKKiBWYW1vcyByZXNvbHZlciBvIGl0ZW0gJDEkLiBPcyBwYXNzb3Mgc8OjbyBvcyBtZXNtb3MgcGFyYSB0b2RvcyBvcyBpdGVuczsgc8OzIG11ZGFtIG9zIHZhbG9yZXMuCgogICAgYGBge3B5dGhvbn0KICAgIGVxID0gZXFzX2ZhY2VbMF0ubGhzCiAgICBmYWNlID0gZmluZF9jYW5vbmljYWxfZXEoZXEpCiAgICAKICAgIEEsIEMsIEQsIEUsIEYgPSBbZmFjZVtjXSBmb3IgYyBpbiAnQUNERUYnXQogICAgZXFfY2Fub25pY2FsID0gZmFjZVsnZXFfY2Fub25pY2FsJ10KICAgIGBgYAoKKiBBIGVxdWHDp8OjbyDDqSAKCiAgICBgYGB7cn0KICAgIG0oJyQke3tlcX19JCQnKQogICAgYGBgCgoqIFZhbW9zIHNlcGFyYXIgb3MgdGVybW9zIGVtICR4JDoKCiAgICBgYGB7cHl0aG9ufQogICAgZXF4ID0gQSp4KioyICsgRCp4CiAgICBgYGAKICAgIAogICAgYGBge3J9CiAgICBtKCckJHt7ZXF4fX0kJCcpCiAgICBgYGAKCiogW0NvbXBsZXRhbmRvIG8gcXVhZHJhZG9dKGh0dHBzOi8vd3d3Lmdlb2dlYnJhLm9yZy9tL3NyZzVhcDg1KSwgaXN0byDDqSBpZ3VhbCBhOgoKICAgIGBgYHtweXRob259CiAgICBlcXggPSBjb21wbHNxKGVxeCwgeCkKICAgIGBgYAogICAgCiAgICBgYGB7cn0KICAgIG0oJyQke3tlcXh9fSQkJykKICAgIGBgYAoKKiBWYW1vcyBzZXBhcmFyIG9zIHRlcm1vcyBlbSAkeSQ6CgogICAgYGBge3B5dGhvbn0KICAgIGVxeSA9IEMqeSoqMiArIEUqeQogICAgYGBgCiAgICAKICAgIGBgYHtyfQogICAgbSgnJCR7e2VxeX19JCQnKQogICAgYGBgCgoqIFtDb21wbGV0YW5kbyBvIHF1YWRyYWRvXShodHRwczovL3d3dy5nZW9nZWJyYS5vcmcvbS9zcmc1YXA4NSksIGlzdG8gw6kgaWd1YWwgYToKCiAgICBgYGB7cHl0aG9ufQogICAgZXF5ID0gY29tcGxzcShlcXksIHkpCiAgICBgYGAKICAgIAogICAgYGBge3J9CiAgICBtKCckJHt7ZXF5fX0kJCcpCiAgICBgYGAKCiogQWdvcmEsIHNvbWFtb3MgZXN0YXMgZHVhcyBleHByZXNzw7VlcyAobWFpcyBvIHRlcm1vIGluZGVwZW5kZW50ZSBkYSBlcXVhw6fDo28gb3JpZ2luYWwpLiAKCiAgTyByZXN1bHRhZG8gw6kgdW1hIGVxdWHDp8OjbyBlcXVpdmFsZW50ZSDDoCBvcmlnaW5hbDoKCiAgICBgYGB7cn0KICAgIG0oJyQke3tFcShlcXggKyBlcXkgKyBGLCAwKX19JCQnKQogICAgYGBgCgoqIEpvZ2FuZG8gbyB0ZXJtbyBpbmRlcGVuZGVudGUgcGFyYSBvIGxhZG8gZGlyZWl0bywgY2hlZ2Ftb3Mgw6AgZm9ybWEgY2Fuw7RuaWNhIGRhIGVxdWHDp8OjbyBkbyBjw61yY3VsbzoKCiAgICBgYGB7cn0KICAgIG0oJyQke3tlcV9jYW5vbmljYWx9fSQkJykKICAgIGBgYAoKOjo6Cgo6Ojogey5ybWRib3ggbGF0ZXg9MX0KCkFzIHJlc3Bvc3RhcyBwYXJhIHRvZG9zIG9zIGl0ZW5zIHPDo286CgpgYGB7cHl0aG9ufQplcXNfZmFjZSA9IFtmaW5kX2Nhbm9uaWNhbF9lcShmLmxocykgZm9yIGYgaW4gZXFzX2ZhY2VdCmBgYAoKYGBge3J9Cm0oCiAgJ3t7IFtpICsgMSBmb3IgaSBpbiBsaXN0KHJhbmdlKHIubl9hbHVub3MpKV0gfX0gJiAnLAogICd7eyBbZlsiZXFfZ2VuZXJhbCJdICAgICAgZm9yIGYgaW4gZXFzX2ZhY2VdIH19ICYgJiAnLAogICd7eyBbZlsiZXFfY2Fub25pY2FsIl1bMF0gZm9yIGYgaW4gZXFzX2ZhY2VdIH19ICcsCiAgc2VwX21pZGRsZSA9ICcgXFxcXCBcbicsCiAgYmVmb3JlID0gcGFzdGUwKAogICAgJyQkIFxcYmVnaW57YXJyYXl9e3J8bGxsfSAnLAogICAgJyYgXFx0ZXh0YmZ7R2VyYWx9ICYgXFxxcXVhZCAmIFxcdGV4dGJme0NhbsO0bmljYX0gXFxcXCBcXGhsaW5lICcKICApLAogIGFmdGVyID0gJ1xcXFwgXFxobGluZSBcXGVuZHthcnJheX0gJCQnLAogIHNlcF9ibG9ja3MgPSAnXG4nCikKYGBgCgo6OjoKCgojIyBOYXJpegoKKiBPIFtuYXJpel17LmhsfSDDqSBhIFtlbGlwc2UgZGUgZWl4byBtYWlvciBob3Jpem9udGFsIGNvbSBhcyBjb29yZGVuYWRhcyBkbyBjZW50cm8sIHZhbG9yZXMgZGUgJGEkIGUgZGUgJGMkIGRhZG9zIGFiYWl4b117LmhsfSAoW3ZlamEgbyBzZXUgbsO6bWVybyAkbiQgbmVzdGEgbGlzdGFdKCNudW1zKSkuCgoqIEFjaGUgYSBbZXF1YcOnw6NvIGNhbsO0bmljYV17LmhsfSBkZXN0YSBlbGlwc2UuCgogICAgYGBge3B5dGhvbiBlY2hvPUZBTFNFfQogICAgY25hcml6ID0gcmMgLyAxMAogICAgYW5hcml6ID0gY25hcml6ICsgY25hcml6IC8gMTAKICAgIAogICAgY2VudHJvbmFyaXplcyA9IFtzeW1waWZ5KCh4eCwgeXkpLCByYXRpb25hbD1UcnVlKSAKICAgICAgZm9yICh4eCwgeXkpIGluIHppcChyLmRmLnhjLCByLmRmLnljKV0KICAgIAogICAgY25hcml6ZXMgPSBbCiAgICAgIGNuYXJpei5zdWJzKHtyYzogcnJ9KSBmb3IgcnIgaW4gci5kZi5yYwogICAgXQogICAgCiAgICBhbmFyaXplcyA9IFsKICAgICAgYW5hcml6LnN1YnMoe2NuYXJpejogY259KSBmb3IgY24gaW4gY25hcml6ZXMKICAgIF0KICAgIGBgYAogICAgCiAgICBgYGB7ciBlY2hvPUZBTFNFfQogICAgbSgKICAgICAgJzEuICRcXGRpc3BsYXlzdHlsZSBcXHF1YWQgXFx0ZXh0e0NlbnRyb30gPSB7e2NlbnRyb25hcml6ZXN9fScsCiAgICAgICdcXCAsXFxxdWFkIGEgPSB7e2FuYXJpemVzfX0nLAogICAgICAnXFwgLFxccXVhZCBjID0ge3tjbmFyaXplc319JywKICAgICAgJyRcblxuXG4nCiAgICApCiAgICBgYGAKICAgIAo6Ojogey5ybWRib3ggbGF0ZXg9MX0KCiogVm9jw6ogcGVyY2ViZXUgcXVlIG8gY2VudHJvIGRhIGVsaXBzZSBkbyBuYXJpeiDDqSBleGF0YW1lbnRlIG8gY2VudHJvIGRvIGPDrXJjdWxvIGRvIHJvc3RvPwoKKiBWYW1vcyByZXNvbHZlciBvIGl0ZW0gJDEkLiBPcyBwYXNzb3Mgc8OjbyBvcyBtZXNtb3MgcGFyYSB0b2RvcyBvcyBpdGVuczsgc8OzIG11ZGFtIG9zIHZhbG9yZXMuCgoqIEEgZXF1YcOnw6NvIGNhbsO0bmljYSBkZSB1bWEgZWxpcHNlICBjb20gZWl4byBtYWlvciBob3Jpem9udGFsIMOpIGRhIGZvcm1hCgogICQkCiAgXGZyYWN7KHggLSBoKV4yfXthXjJ9ICsgXGZyYWN7KHkgLSBrKV4yfXtiXjJ9ID0gMQogICQkCgogIG9uZGUgJChoLCBrKSQgw6kgbyBjZW50cm8sIHF1ZSBmb2kgZGFkby4KICAKKiBPIHZhbG9yIGRlICRhJCBmb2kgZGFkby4KCiogTyB2YWxvciBkZSAkYiQgcG9kZSBzZXIgY2FsY3VsYWRvIGNvbW8gJGIgPSBcc3FydHthXjIgLSBjXjJ9JCwgY29tICRjJCBkYWRvLgoKICAgIGBgYHtweXRob259CiAgICBjZW50cm8gPSBjZW50cm9uYXJpemVzWzBdCiAgICBjID0gY25hcml6ZXNbMF0KICAgIGEgPSBhbmFyaXplc1swXQogICAgYiA9IHNxcnQoYSoqMiAtIGMqKjIpCiAgICAKICAgIGRlZiBlcW5hcml6KGNlbnRybywgYSwgYyk6CiAgICAgIAogICAgICBoLCBrID0gY2VudHJvCiAgICAgIGIgPSBzcXJ0KGEqKjIgLSBjKioyKQogICAgICAKICAgICAgbnVtMSA9ICh4IC0gaCkqKjIKICAgICAgZGVub20xID0gYSoqMgogICAgICAKICAgICAgbnVtMiA9ICh5IC0gaykqKjIKICAgICAgZGVub20yID0gYioqMgogICAgICAKICAgICAgZXEgPSBzeW1waWZ5KCBcCiAgICAgICAgJ0VxKG51bTEgLyBkZW5vbTEgKyBudW0yL2Rlbm9tMiwgMSknLCBcCiAgICAgICAgbG9jYWxzID0geyBcCiAgICAgICAgICAnbnVtMSc6IG51bTEsICdudW0yJzogbnVtMiwgJ2Rlbm9tMSc6IGRlbm9tMSwgJ2Rlbm9tMic6IGRlbm9tMiBcCiAgICAgICAgfSwgXAogICAgICAgIGV2YWx1YXRlPUZhbHNlIFwKICAgICAgKQogICAgICAKICAgICAgcmV0dXJuIGVxCiAgICAgIAogICAgYGBgCgoqIFVzYW5kbyBvcyB2YWxvcmVzIGRvIGl0ZW0gJDEkOgoKICAqIGByIG0oJ0NlbnRybyAke30gPSB7e2NlbnRyb319JCcpYAoKICAqIGByIG0oJyRhID0ge3thfX0kJylgCgogICogYHIgbSgnJGMgPSB7e2N9fSQnKWAKCiAgKiBDYWxjdWxhbW9zIGByIG0oJyRiID0ge3tifX0kJylgCiAgCiAgKiBFIGEgZXF1YcOnw6NvIGZpY2EKICAKICAgIGBgYHtyfQogICAgbSgnJCR7eyBlcW5hcml6KGNlbnRybywgYSwgYykgfX0kJCcpCiAgICBgYGAKCjo6OgoKOjo6IHsucm1kYm94IGxhdGV4PTF9CgpBcyByZXNwb3N0YXMgcGFyYSB0b2RvcyBvcyBpdGVucyBzw6NvOgoKYGBge3B5dGhvbn0KZXFzX25hcml6ID0gWyBlcW5hcml6KGNlbiwgYSwgYykgXAogIGZvciAoY2VuLCBhLCBjKSBpbiB6aXAoY2VudHJvbmFyaXplcywgYW5hcml6ZXMsIGNuYXJpemVzKSBdCmBgYAoKYGBge3J9Cm0oCiAgJ3t7IFtpICsgMSBmb3IgaSBpbiBsaXN0KHJhbmdlKHIubl9hbHVub3MpKV0gfX0gJiAnLAogICdcXGRpc3BsYXlzdHlsZSB7eyBlcXNfbmFyaXogfX0gJywKICBzZXBfbWlkZGxlID0gJyBcXFxcIFxuJywKICBiZWZvcmUgPSBwYXN0ZTAoCiAgICAnJCQgXFxiZWdpbnthcnJheX17cnxsfSAnLAogICAgJ1xcaGxpbmUgJwogICksCiAgYWZ0ZXIgPSAnXFxcXCBcXGhsaW5lIFxcZW5ke2FycmF5fSAkJCcsCiAgc2VwX2Jsb2NrcyA9ICdcbicKKQpgYGAKCjo6OgoKCiMjIE9saG9zCgoqIE9zIFtjZW50cm9zIGRvcyBvbGhvc117LmhsfSBzw6NvIG9zIFtmb2NvcyBkYSBlbGlwc2UgY29tIGVxdWHDp8OjbyBnZXJhbCBkYWRhIGFiYWl4b117LmhsfSAoW3ZlamEgbyBzZXUgbsO6bWVybyAkbiQgbmVzdGEgbGlzdGFdKCNudW1zKSkuCgoqIEFjaGUgYSBbZXF1YcOnw6NvIGNhbsO0bmljYV17LmhsfSBlIGFzIFtjb29yZGVuYWRhcyBkb3MgZm9jb3Ndey5obH0gZGVzdGEgZWxpcHNlLgoKICAgIGBgYHtweXRob24gZWNobz1GQUxTRX0KICAgIGVxX21hc2NhcmEgPSA4MCAqICgKICAgICAgKDIxICogeCoqKDIpKSArCiAgICAgICgxMjEgKiB5KiooMikpICsKICAgICAgLSAoKDQyICogeGMpICogeCkKICAgICAgLSAoKChSYXRpb25hbCgyNDIsIDUpICogcmMpICsgKDI0MiAqIHljKSkgKiB5KSArCiAgICAgICgoUmF0aW9uYWwoMjQyLCA1KSAqIHJjKSAqIHljKSArCiAgICAgIChSYXRpb25hbCgtMTIxLCA4MCkgKiByYyoqKDIpKSArCiAgICAgICgyMSAqIHhjKiooMikpICsKICAgICAgKDEyMSAqIHljKiooMikpCiAgICApCiAgICAKICAgIGVxc19tYXNjYXJhID0gWwogICAgICBtb25pYyhlcV9tYXNjYXJhLnN1YnMoe3hjOiB4eCwgeWM6IHl5LCByYzogcnJ9KSkKICAgICAgZm9yICh4eCwgeXksIHJyKSAKICAgICAgaW4gemlwKHIuZGYueGMsIHIuZGYueWMsIHIuZGYucmMpCiAgICBdCiAgICBgYGAKICAgIAogICAgYGBge3IgZWNobz1GQUxTRX0KICAgIG0oCiAgICAgICcxLiAkXFxkaXNwbGF5c3R5bGUgXFxxdWFkIHt7ZXFzX21hc2NhcmF9fSA9IDAkXG5cblxuJwogICAgKQogICAgYGBgCgo6Ojogey5ybWRib3ggbGF0ZXg9MX0KCiogVmFtb3MgcmVzb2x2ZXIgbyBpdGVtICQxJC4gT3MgcGFzc29zIHPDo28gb3MgbWVzbW9zIHBhcmEgdG9kb3Mgb3MgaXRlbnM7IHPDsyBtdWRhbSBvcyB2YWxvcmVzLgoKICAgIGBgYHtweXRob259CiAgICBlcSA9IGVxc19tYXNjYXJhWzBdCiAgICBtYXNjYXJhID0gZmluZF9jYW5vbmljYWxfZXEoZXEpCiAgICAKICAgIEEsIEMsIEQsIEUsIEYgPSBbbWFzY2FyYVtjXSBmb3IgYyBpbiAnQUNERUYnXQogICAgZXFfY2Fub25pY2FsID0gbWFzY2FyYVsnZXFfY2Fub25pY2FsJ10KICAgIGBgYAoKKiBBIGVxdWHDp8OjbyDDqSAKCiAgICBgYGB7cn0KICAgIG0oJyQke3tlcX19ID0gMCQkJykKICAgIGBgYAoKKiBWYW1vcyBzZXBhcmFyIG9zIHRlcm1vcyBlbSAkeCQ6CgogICAgYGBge3B5dGhvbn0KICAgIGVxeCA9IEEqeCoqMiArIEQqeAogICAgYGBgCiAgICAKICAgIGBgYHtyfQogICAgbSgnJCR7e2VxeH19JCQnKQogICAgYGBgCgoqIFtDb21wbGV0YW5kbyBvIHF1YWRyYWRvXShodHRwczovL3d3dy5nZW9nZWJyYS5vcmcvbS9zcmc1YXA4NSksIGlzdG8gw6kgaWd1YWwgYToKCiAgICBgYGB7cHl0aG9ufQogICAgZXF4ID0gY29tcGxzcShlcXgsIHgpCiAgICBgYGAKICAgIAogICAgYGBge3J9CiAgICBtKCckJHt7ZXF4fX0kJCcpCiAgICBgYGAKCiogVmFtb3Mgc2VwYXJhciBvcyB0ZXJtb3MgZW0gJHkkOgoKICAgIGBgYHtweXRob259CiAgICBlcXkgPSBDKnkqKjIgKyBFKnkKICAgIGBgYAogICAgCiAgICBgYGB7cn0KICAgIG0oJyQke3tlcXl9fSQkJykKICAgIGBgYAoKKiBbQ29tcGxldGFuZG8gbyBxdWFkcmFkb10oaHR0cHM6Ly93d3cuZ2VvZ2VicmEub3JnL20vc3JnNWFwODUpLCBpc3RvIMOpIGlndWFsIGE6CgogICAgYGBge3B5dGhvbn0KICAgIGVxeSA9IGNvbXBsc3EoZXF5LCB5KQogICAgYGBgCiAgICAKICAgIGBgYHtyfQogICAgbSgnJCR7e2VxeX19JCQnKQogICAgYGBgCgoqIEFnb3JhLCBzb21hbW9zIGVzdGFzIGR1YXMgZXhwcmVzc8O1ZXMgKG1haXMgbyB0ZXJtbyBpbmRlcGVuZGVudGUgZGEgZXF1YcOnw6NvIG9yaWdpbmFsKS4gCgogIE8gcmVzdWx0YWRvIMOpIHVtYSBlcXVhw6fDo28gZXF1aXZhbGVudGUgw6Agb3JpZ2luYWw6CgogICAgYGBge3J9CiAgICBtKCckJHt7RXEoZXF4ICsgZXF5ICsgRiwgMCl9fSQkJykKICAgIGBgYAoKKiBKb2dhbmRvIG8gdGVybW8gaW5kZXBlbmRlbnRlIHBhcmEgbyBsYWRvIGRpcmVpdG8sIGUgZGl2aWRpbmRvIHR1ZG8gcGFyYSBvIGxhZG8gZGlyZWl0byBmaWNhciBpZ3VhbCBhICQxJCwgY2hlZ2Ftb3Mgw6AgZm9ybWEgY2Fuw7RuaWNhIGRhIGVxdWHDp8OjbyBkYSBlbGlwc2U6CgogICAgYGBge3J9CiAgICBtKCckJHt7ZXFfY2Fub25pY2FsfX0kJCcpCiAgICBgYGAKCjo6OgoKOjo6IHsucm1kYm94IGxhdGV4PTF9CgpBcyByZXNwb3N0YXMgcGFyYSB0b2RvcyBvcyBpdGVucyBzw6NvOgoKYGBge3B5dGhvbn0KZXFzX21hc2NhcmEgPSBbZmluZF9jYW5vbmljYWxfZXEoZikgZm9yIGYgaW4gZXFzX21hc2NhcmFdCmBgYAoKYGBge3J9Cm0oCiAgJ3t7IFtpICsgMSBmb3IgaSBpbiBsaXN0KHJhbmdlKHIubl9hbHVub3MpKV0gfX0gJiAnLAogICdcXGRpc3BsYXlzdHlsZSB7eyBbZlsiZXFfY2Fub25pY2FsIl1bMF0gZm9yIGYgaW4gZXFzX21hc2NhcmFdIH19ICcsCiAgc2VwX21pZGRsZSA9ICcgXFxcXCBcbicsCiAgYmVmb3JlID0gcGFzdGUwKAogICAgJyQkIFxcYmVnaW57YXJyYXl9e3J8bH0nLAogICAgJ1xcaGxpbmUgJwogICksCiAgYWZ0ZXIgPSAnXFxcXCBcXGhsaW5lIFxcZW5ke2FycmF5fSAkJCcsCiAgc2VwX2Jsb2NrcyA9ICdcbicKKQpgYGAKCjo6OgoKOjo6IHsucm1kYm94IGxhdGV4PTF9CgoqIFBhcmEgYWNoYXIgb3MgZm9jb3MsIGxlbWJyZS1zZSBkZSBxdWUsIHBhcmEgdW1hIGVsaXBzZSBjb20gZWl4byBtYWlvciBob3Jpem9udGFsLCBjb20gY2VudHJvIGVtICQoaCwgaykkLCBvcyBmb2NvcyBzw6NvCgogICQkCiAgXGJlZ2lue2FsaWdufQogICAgRl8xICY9IChoIC0gYywgaykgXFwKICAgIEZfMiAmPSAoaCArIGMsIGspCiAgXGVuZHthbGlnbn0KICAkJAoKICBvbmRlICRjJCDDqSBhIGRpc3TDom5jaWEgZm9jYWwsIHF1ZSBwb2RlIHNlciBjYWxjdWxhZGEgY29tbwogIAogICQkCiAgYyA9IFxzcXJ0e2FeMiAtIGJeMn0KICAkJAogIAoqIFBhcmEgbyBpdGVtICQxJAogIApgYGB7cHl0aG9ufQpkZWYgZmluZF9mb2NpKGNvbmljKToKICAKICBlcWxocyA9IGNvbmljWydlcV9jYW5vbmljYWwnXVswXS5saHMKICBhYSwgYmIsIGgsIGsgPSBbIFdpbGQodywgZXhjbHVkZT1beCwgeV0pIGZvciB3IGluIFsnYWEnLCAnYmInLCAnaCcsICdrJ10gXQogIAogIGVxeCwgZXF5ID0gc3ltcGlmeSgnZXFsaHMuYXJncycsIGxvY2Fscz17J2VxbGhzJzogZXFsaHN9LCBldmFsdWF0ZT1GYWxzZSkKICBteCA9IGVxeC5tYXRjaCgoMSAvIGFhKSAqICh4IC0gaCkqKjIpCiAgbXkgPSBlcXkubWF0Y2goKDEgLyBiYikgKiAoeSAtIGspKioyKQogIAogIGEyID0gYWEueHJlcGxhY2UobXgpCiAgYjIgPSBiYi54cmVwbGFjZShteSkKICAKICBjID0gc3FydChhMiAtIGIyKQogIAogIGhoID0gaC54cmVwbGFjZShteCkKICBrayA9IGsueHJlcGxhY2UobXkpCiAgCiAgY29uaWNbJ2gnXSA9IGhoCiAgY29uaWNbJ2snXSA9IGtrCiAgY29uaWNbJ2EnXSA9IHNxcnQoYTIpCiAgY29uaWNbJ2InXSA9IHNxcnQoYjIpCiAgY29uaWNbJ2MnXSA9IGMKICBjb25pY1snZm9jaSddID0gW1BvaW50KGhoIC0gYywga2spLCBQb2ludChoaCArIGMsIGtrKV0gCiAgCmBgYCAgCiAgCmBgYHtweXRob259CmRlZiBwb2ludF90b190dXBsZShwKToKICAKICByZXR1cm4gc3ltcGlmeSgocC54LCBwLnkpKQpgYGAKICAKYGBge3B5dGhvbn0KY29uaWMgPSBlcXNfbWFzY2FyYVswXQpmaW5kX2ZvY2koY29uaWMpCmEyID0gY29uaWNbJ2EnXSoqMgpiMiA9IGNvbmljWydiJ10qKjIKYyA9IGNvbmljWydjJ10KZm9jaSA9IFsgcG9pbnRfdG9fdHVwbGUoZikgZm9yIGYgaW4gY29uaWNbJ2ZvY2knXSBdCmggPSBjb25pY1snaCddCmsgPSBjb25pY1snayddCmBgYAogIAogICQkCiAgXGJlZ2lue2FsaWdufQogIGggJj0gYHIgcHkkaGAgXFwKICBrICY9IGByIHB5JGtgIFxcCiAgYyAmPSBcc3FydHtgciBweSRhMmAgLSBgciBweSRiMmB9ID0gYHIgcHkkY2AgIAogIFxlbmR7YWxpZ259CiAgJCQKCiogT3MgZm9jb3Mgc8OjbyAKCiAgICBgYGB7cn0KICAgIG0oCiAgICAgICd7eyBmb2NpIH19JywgCiAgICAgIHNlcF9taWRkbGUgPSAnXFxxdWFkXFx0ZXh0e2V9XFxxdWFkJywKICAgICAgYmVmb3JlID0gJyQkJywKICAgICAgYWZ0ZXIgPSAnJCQnCiAgICApCiAgICBgYGAKCjo6OgoKOjo6IHsucm1kYm94IGxhdGV4PTF9CgpBcyByZXNwb3N0YXMgcGFyYSB0b2RvcyBvcyBpdGVucyBzw6NvOgoKYGBge3B5dGhvbn0KZm9yIGNvbmljIGluIGVxc19tYXNjYXJhOgogIGZpbmRfZm9jaShjb25pYykKCmYxID0gWyBwb2ludF90b190dXBsZShjWydmb2NpJ11bMF0pIGZvciBjIGluIGVxc19tYXNjYXJhIF0gCmYyID0gWyBwb2ludF90b190dXBsZShjWydmb2NpJ11bMV0pIGZvciBjIGluIGVxc19tYXNjYXJhIF0gCmBgYAoKYGBge3J9Cm0oCiAgJ3t7IFtpICsgMSBmb3IgaSBpbiBsaXN0KHJhbmdlKHIubl9hbHVub3MpKV0gfX0gJiAnLAogICdcXGRpc3BsYXlzdHlsZSB7eyBmMSB9fSAmICcsCiAgJ1xcZGlzcGxheXN0eWxlIHt7IGYyIH19ICcsCiAgc2VwX21pZGRsZSA9ICcgXFxcXCBcbicsCiAgYmVmb3JlID0gcGFzdGUwKAogICAgJyQkIFxcYmVnaW57YXJyYXl9e3J8bGx9JywKICAgICdcXGhsaW5lICcKICApLAogIGFmdGVyID0gJ1xcXFwgXFxobGluZSBcXGVuZHthcnJheX0gJCQnLAogIHNlcF9ibG9ja3MgPSAnXG4nCikKYGBgCgo6OjoKCiogW0NhZGEgb2xob117LmhsfSDDqSB1bWEgW2VsaXBzZSBkZSBlaXhvIG1haW9yIHZlcnRpY2FsIGNvbSBvcyB2YWxvcmVzIGRlICRhJCBlIGRlICRjJCBkYWRvcyBhYmFpeG9dey5obH0gKFt2ZWphIG8gc2V1IG7Dum1lcm8gJG4kIG5lc3RhIGxpc3RhXSgjbnVtcykpLgoKKiBBY2hlIGFzIFtlcXVhw6fDtWVzIGdlcmFpc117LmhsfSBkZXN0YXMgZWxpcHNlcy4KCiAgICBgYGB7cHl0aG9uIGVjaG89RkFMU0V9CiAgICBjb2xobyA9IHJjIC8gNAogICAgYW9saG8gPSByYyAvIDMKICAgIAogICAgY29saG9zID0gWwogICAgICBjb2xoby5zdWJzKHtyYzogcnJ9KSBmb3IgcnIgaW4gci5kZi5yYwogICAgXQogICAgCiAgICBhb2xob3MgPSBbCiAgICAgIGFvbGhvLnN1YnMoe3JjOiBycn0pIGZvciByciBpbiByLmRmLnJjCiAgICBdCiAgICBgYGAKICAgIAogICAgYGBge3IgZWNobz1GQUxTRX0KICAgIG0oCiAgICAgICcxLiAkXFxkaXNwbGF5c3R5bGUgXFxxdWFkIGEgPSB7e2FvbGhvc319JywKICAgICAgJ1xcICxcXHF1YWQgYyA9IHt7Y29saG9zfX0kXG5cblxuJwogICAgKQogICAgYGBgCiAgICAKOjo6IHsucm1kYm94IGxhdGV4PTF9CgoqIFZhbW9zIHJlc29sdmVyIG8gaXRlbSAkMSQuIE9zIHBhc3NvcyBzw6NvIG9zIG1lc21vcyBwYXJhIHRvZG9zIG9zIGl0ZW5zOyBzw7MgbXVkYW0gb3MgdmFsb3Jlcy4KCiogVGVtb3MsIHBhcmEgY2FkYSBvbGhvOgoKICAqIE8gY2VudHJvICQoaCwgaykkLCBxdWUgw6kgdW0gZG9zIGZvY29zIGRhIGVsaXBzZSBkbyBpdGVtIGFudGVyaW9yOwogIAogICogTyB2YWxvciBkZSAkYSQ7CiAgCiAgKiBPIHZhbG9yIGRlICRjJC4KICAKKiBPIG1haXMgcHLDoXRpY28gw6kgYWNoYXIgYSBlcXVhw6fDo28gY2Fuw7RuaWNhIGRlIGNhZGEgb2xobywgcXVlIMOpIGRhIGZvcm1hCgogICQkCiAgXGZyYWN7KHggLSBoKV4yfXtiXjJ9ICsgXGZyYWN7KHkgLSBrKV4yfXthXjJ9ID0gMQogICQkCgogIG9uZGUgJGIgPSBcc3FydHthXjIgLSBjXjJ9JC4gCiAgCiogW0ltcG9ydGFudGU6IF17LmhsfSBjb21vIGEgZWxpcHNlIHRlbSBvIGVpeG8gbWFpb3IgdmVydGljYWwsIG8gZGVub21pbmFkb3IgJGFeMiQgYXBhcmVjZSBubyB0ZXJtbyBlbSAkeSQuCiAgCiogVW1hIHZleiBhY2hhZGEgYSBlcXVhw6fDo28gY2Fuw7RuaWNhLCBkZXNlbnZvbHZlbW9zIG9zIHF1YWRyYWRvcyBlIGEgc29tYSBwYXJhIGFjaGFyIGEgZXF1YcOnw6NvIGdlcmFsLgoKYGBge3B5dGhvbn0KZGVmIG9saG8oaCwgaywgYSwgYyk6CiAgCiAgYjIgPSBhKioyIC0gYyoqMgogIGVxID0gKHggLSBoKSoqMiAvIGIyICsgKHkgLSBrKSoqMiAvIGEqKjIgLSAxCiAgZXEgPSBleHBhbmQoZXEpCiAgCiAgcmV0dXJuIGZpbmRfY2Fub25pY2FsX2VxKGVxKQpgYGAKCiogUGFyYSB1bSBvbGhvOgoKYGBge3B5dGhvbn0KaCwgayA9IGYxWzBdCmEgPSBhb2xob3NbMF0KYyA9IGNvbGhvc1swXQpvbGhvMSA9IG9saG8oaCwgaywgYSwgYykKY2Fub25pY2FsID0gb2xobzFbJ2VxX2Nhbm9uaWNhbCddWzBdCmdlbmVyYWwgPSBvbGhvMVsnZXFfZ2VuZXJhbCddCmIgPSBzcXJ0KGEqKjIgLSBjKioyKQpgYGAKCiAgICBgYGB7cn0KICAgIG0oCiAgICAgICcqIENlbnRybyAkKGgsIGspID0ge3sgZjFbMF0gfX0kICcsCiAgICAgICcqICRhID0ge3sgYW9saG9zWzBdIH19JCAnLAogICAgICAnKiAkYyA9IHt7IGNvbGhvc1swXSB9fSQgJywKICAgICAgJyogJGIgPSB7eyBiIH19JCAnLAogICAgICAnKiBFcXVhw6fDo28gY2Fuw7RuaWNhICR7fT0ge3sgY2Fub25pY2FsIH19JCAnLAogICAgICAnKiBFcXVhw6fDo28gZ2VyYWwgJHt9PSB7eyBnZW5lcmFsIH19JCAnLAogICAgICBzZXAgPSAnXG5cbicgIAogICAgKQogICAgYGBgCgoqIFBhcmEgbyBvdXRybyBvbGhvOgoKYGBge3B5dGhvbn0KaCwgayA9IGYyWzBdCmEgPSBhb2xob3NbMF0KYyA9IGNvbGhvc1swXQpvbGhvMiA9IG9saG8oaCwgaywgYSwgYykKY2Fub25pY2FsID0gb2xobzJbJ2VxX2Nhbm9uaWNhbCddWzBdCmdlbmVyYWwgPSBvbGhvMlsnZXFfZ2VuZXJhbCddCmIgPSBzcXJ0KGEqKjIgLSBjKioyKQpgYGAKCiAgICBgYGB7cn0KICAgIG0oCiAgICAgICcqIENlbnRybyAkKGgsIGspID0ge3sgZjJbMF0gfX0kICcsCiAgICAgICcqICRhID0ge3sgYW9saG9zWzBdIH19JCAnLAogICAgICAnKiAkYyA9IHt7IGNvbGhvc1swXSB9fSQgJywKICAgICAgJyogJGIgPSB7eyBiIH19JCAnLAogICAgICAnKiBFcXVhw6fDo28gY2Fuw7RuaWNhICR7fT0ge3sgY2Fub25pY2FsIH19JCAnLAogICAgICAnKiBFcXVhw6fDo28gZ2VyYWwgJHt9PSB7eyBnZW5lcmFsIH19JCAnLAogICAgICBzZXAgPSAnXG5cbicgIAogICAgKQogICAgYGBgCgo6OjoKCjo6OiB7LnJtZGJveCBsYXRleD0xfQoKQXMgcmVzcG9zdGFzIHBhcmEgdG9kb3Mgb3MgaXRlbnMgKGVxdWHDp8O1ZXMgY2Fuw7RuaWNhcyBlIGdlcmFpcyBkbyBbcHJpbWVpcm9dey5obH0gb2xobykgc8OjbzoKCmBgYHtweXRob259Cm9saG9zMSA9IFwKICBbIG9saG8oZlswXSwgZlsxXSwgYSwgYykgZm9yIGYsIGEsIGMgaW4gemlwKGYxLCBhb2xob3MsIGNvbGhvcykgXQogIApnZW5lcmFsMSA9IFsgY1snZXFfZ2VuZXJhbCddIGZvciBjIGluIG9saG9zMSBdCmNhbm9uaWNhbDEgPSBbIGNbJ2VxX2Nhbm9uaWNhbCddWzBdIGZvciBjIGluIG9saG9zMSBdCgpvbGhvczIgPSBcCiAgWyBvbGhvKGZbMF0sIGZbMV0sIGEsIGMpIGZvciBmLCBhLCBjIGluIHppcChmMiwgYW9saG9zLCBjb2xob3MpIF0KICAKZ2VuZXJhbDIgPSBbIGNbJ2VxX2dlbmVyYWwnXSBmb3IgYyBpbiBvbGhvczIgXQpjYW5vbmljYWwyID0gWyBjWydlcV9jYW5vbmljYWwnXVswXSBmb3IgYyBpbiBvbGhvczIgXQpgYGAKCmBgYHtyfQptKAogICd7eyBbaSArIDEgZm9yIGkgaW4gbGlzdChyYW5nZShyLm5fYWx1bm9zKSldIH19ICYgJywKICAnXFxkaXNwbGF5c3R5bGUge3sgY2Fub25pY2FsMSB9fSAmIFxccXF1YWQgJiAnLAogICdcXGRpc3BsYXlzdHlsZSB7eyBnZW5lcmFsMSB9fSAnLAogIHNlcF9taWRkbGUgPSAnIFxcXFwgXG4nLAogIGJlZm9yZSA9IHBhc3RlMCgKICAgICckJCBcXGJlZ2lue2FycmF5fXtyfGxsbH0nLAogICAgJyBcXGhsaW5lICcKICApLAogIGFmdGVyID0gJ1xcXFwgXFxobGluZSBcXGVuZHthcnJheX0gJCQnLAogIHNlcF9ibG9ja3MgPSAnXG4nCikKYGBgCgpBcyByZXNwb3N0YXMgcGFyYSB0b2RvcyBvcyBpdGVucyAoZXF1YcOnw7VlcyBjYW7DtG5pY2FzIGUgZ2VyYWlzIGRvIFtzZWd1bmRvXXsuaGx9IG9saG8pIHPDo286CgpgYGB7cn0KbSgKICAne3sgW2kgKyAxIGZvciBpIGluIGxpc3QocmFuZ2Uoci5uX2FsdW5vcykpXSB9fSAmICcsCiAgJ1xcZGlzcGxheXN0eWxlIHt7IGNhbm9uaWNhbDIgfX0gJiBcXHFxdWFkICYgJywKICAnXFxkaXNwbGF5c3R5bGUge3sgZ2VuZXJhbDIgfX0gJywKICBzZXBfbWlkZGxlID0gJyBcXFxcIFxuJywKICBiZWZvcmUgPSBwYXN0ZTAoCiAgICAnJCQgXFxiZWdpbnthcnJheX17cnxsbGx9JywKICAgICcgXFxobGluZSAnCiAgKSwKICBhZnRlciA9ICdcXFxcIFxcaGxpbmUgXFxlbmR7YXJyYXl9ICQkJywKICBzZXBfYmxvY2tzID0gJ1xuJwopCmBgYAoKOjo6CgoKIyMgQm9jYQoKKiBBIFtwYXJ0ZSBzdXBlcmlvciBkYSBib2NhXXsuaGx9IMOpIHVtYSBbcGFyw6Fib2xhIGNvbSBjb25jYXZpZGFkZSBwYXJhIGNpbWEsIGNvbSBhcyBjb29yZGVuYWRhcyBkbyBmb2NvICRGJCBlIGEgZGlzdMOibmNpYSBmb2NhbCAkcCQgZGFkYXMgYWJhaXhvXXsuaGx9IChbdmVqYSBvIHNldSBuw7ptZXJvICRuJCBuZXN0YSBsaXN0YV0oI251bXMpKS4KCiogQWNoZSBhIFtlcXVhw6fDo28gY2Fuw7RuaWNhXXsuaGx9IGRlc3RhIHBhcsOhYm9sYS4KCiAgICBgYGB7cHl0aG9uIGVjaG89RkFMU0V9CiAgICBmYm9jYXN1cCA9ICh4YywgeWMgLSByYyAvIDMpCiAgICBwYm9jYXN1cCA9IHJjIC8gNAogICAgCiAgICBmYm9jYXN1cHMgPSBbCiAgICAgIFMoCiAgICAgICAgKAogICAgICAgICAgZmJvY2FzdXBbMF0uc3Vicyh7eGM6IHh4LCB5YzogeXksIHJjOiBycn0pLAogICAgICAgICAgZmJvY2FzdXBbMV0uc3Vicyh7eGM6IHh4LCB5YzogeXksIHJjOiBycn0pCiAgICAgICAgKQogICAgICApCiAgICAgIGZvciAoeHgsIHl5LCBycikgCiAgICAgIGluIHppcChyLmRmLnhjLCByLmRmLnljLCByLmRmLnJjKQogICAgXQogICAgCiAgICBwYm9jYXN1cHMgPSBbCiAgICAgIHBib2Nhc3VwLnN1YnMoe3JjOiBycn0pIGZvciByciBpbiByLmRmLnJjCiAgICBdCiAgICBgYGAKICAgIAogICAgYGBge3IgZWNobz1GQUxTRX0KICAgIG0oCiAgICAgICcxLiAkXFxkaXNwbGF5c3R5bGUgXFxxdWFkIEYgPSB7e2Zib2Nhc3Vwc319JywKICAgICAgJ1xcICxcXHF1YWQgcCA9IHt7cGJvY2FzdXBzfX0kXG5cblxuJwogICAgKQogICAgYGBgCgo6Ojogey5ybWRib3ggbGF0ZXg9MX0KCiogVmFtb3MgcmVzb2x2ZXIgbyBpdGVtIDEuIE9zIHBhc3NvcyBzw6NvIG9zIG1lc21vcyBwYXJhIHRvZG9zIG9zIGl0ZW5zOyBzw7MgbXVkYW0gb3MgdmFsb3Jlcy4KCiogQSBlcXVhw6fDo28gY2Fuw7RuaWNhIGRhIHBhcsOhYm9sYSBjb20gZWl4byB2ZXJ0aWNhbCDDqQoKICAkJAogIHkgLSBrID0gXGZyYWN7MX17NHB9KHggLSBoKV4yCiAgJCQKCiAgb25kZQogIAogICogJChoLCBrKSQgw6kgbyB2w6lydGljZTsKICAKICAqICRwID0gMy80JCDDqSBhIGRpc3TDom5jaWEgZm9jYWwsIHF1ZSBmb2kgZGFkYS4KICAKKiBBcyBjb29yZGVuYWRhcyBkbyBmb2NvICRGID0gKC0xLCAtMykkIGZvcmFtIGRhZGFzLCBlIG8gdsOpcnRpY2UgZXN0w6EgZXhhdGFtZW50ZSBhICRwID0gMy80JCB1bmlkYWRlcyBkZSBkaXN0w6JuY2lhIGFiYWl4byBkbyBmb2NvLgoKKiBPdSBzZWphLCAkaCA9IC0xJCBlICRrID0gLTMgLSAzLzQgPSAtMTUvNCQuCgoqIEEgZXF1YcOnw6NvIGNhbsO0bmljYSBmaWNhCgogICQkCiAgeSArIFxmcmFjezE1fXs0fSA9IFxmcmFjezF9ezN9KHggKyAxKV4yCiAgJCQKCjo6OgoKOjo6IHsucm1kYm94IGxhdGV4PTF9CgpBcyByZXNwb3N0YXMgcGFyYSB0b2RvcyBvcyBpdGVucyBzw6NvOgoKYGBge3B5dGhvbn0KZGVmIGJvY2ExKGYsIHApOgogIAogIGZ4LCBmeSA9IGYKICBoID0gZngKICBrID0gZnkgLSBwCiAgCiAgcmV0dXJuIEVxKHkgLSBrLCAxIC8gKDQqcCkgKiAoeCAtIGgpKioyKQpgYGAKCmBgYHtweXRob259CmVxc19ib2Nhc3VwID0gWyBib2NhMShmLCBwKSBmb3IgZiwgcCBpbiB6aXAoZmJvY2FzdXBzLCBwYm9jYXN1cHMpIF0KYGBgCgpgYGB7cn0KbSgKICAne3sgW2kgKyAxIGZvciBpIGluIGxpc3QocmFuZ2Uoci5uX2FsdW5vcykpXSB9fSAmICcsCiAgJ1xcZGlzcGxheXN0eWxlIHt7IGVxc19ib2Nhc3VwIH19ICcsCiAgc2VwX21pZGRsZSA9ICcgXFxcXCBcbicsCiAgYmVmb3JlID0gcGFzdGUwKAogICAgJyQkIFxcYmVnaW57YXJyYXl9e3J8bH0nLAogICAgJyBcXGhsaW5lICcKICApLAogIGFmdGVyID0gJ1xcXFwgXFxobGluZSBcXGVuZHthcnJheX0gJCQnLAogIHNlcF9ibG9ja3MgPSAnXG4nCikKYGBgCgo6OjoKCiogQSBbcGFydGUgaW5mZXJpb3IgZGEgYm9jYV17LmhsfSB0YW1iw6ltIMOpIHVtYSBbcGFyw6Fib2xhLCBjdWphIGVxdWHDp8OjbyBnZXJhbCDDqSBkYWRhIGFiYWl4b117LmhsfSAoW3ZlamEgbyBzZXUgbsO6bWVybyAkbiQgbmVzdGEgbGlzdGFdKCNudW1zKSkuCgoqIEFjaGUgYSBbZXF1YcOnw6NvIGNhbsO0bmljYV17LmhsfSBkZXN0YSBwYXLDoWJvbGEuCgogICAgYGBge3B5dGhvbiBlY2hvPUZBTFNFfQogICAgZXFfYm9jYWluZiA9IC0xOCpyYyp5IC0gMTUqcmMqKjIgKyAyNip4YyoqMiArIDI2KngqKjIgKyAxOCpyYyp5YyAtIDUyKnhjKngKICAgIAogICAgZXFzX2JvY2FpbmYgPSBbCiAgICAgIG1vbmljKGVxX2JvY2FpbmYuc3Vicyh7eGM6IHh4LCB5YzogeXksIHJjOiBycn0pKQogICAgICBmb3IgKHh4LCB5eSwgcnIpIAogICAgICBpbiB6aXAoci5kZi54Yywgci5kZi55Yywgci5kZi5yYykKICAgIF0KICAgIGBgYAogICAgCiAgICBgYGB7ciBlY2hvPUZBTFNFfQogICAgbSgKICAgICAgJzEuICRcXGRpc3BsYXlzdHlsZSBcXHF1YWQge3tlcXNfYm9jYWluZn19ID0gMCRcblxuXG4nCiAgICApCiAgICBgYGAKCjo6OiB7LnJtZGJveCBsYXRleD0xfQoKKiBWYW1vcyByZXNvbHZlciBvIGl0ZW0gMS4gT3MgcGFzc29zIHPDo28gb3MgbWVzbW9zIHBhcmEgdG9kb3Mgb3MgaXRlbnM7IHPDsyBtdWRhbSBvcyB2YWxvcmVzLgoKICAgIGBgYHtweXRob259CiAgICBlcSA9IGVxc19ib2NhaW5mWzBdCiAgICBmYWNlID0gZmluZF9jYW5vbmljYWxfZXEoZXEpCiAgICAKICAgIEEsIEQsIEUsIEYgPSBbZmFjZVtjXSBmb3IgYyBpbiAnQURFRiddCiAgICBlcV9jYW5vbmljYWwgPSBmYWNlWydlcV9jYW5vbmljYWwnXQogICAgYGBgCgoqIEEgZXF1YcOnw6NvIMOpIAoKICAgIGBgYHtyfQogICAgbSgnJCR7e2VxfX0gPSAwJCQnKQogICAgYGBgCgoqIFZhbW9zIHNlcGFyYXIgb3MgdGVybW9zIGVtICR4JDoKCiAgICBgYGB7cHl0aG9ufQogICAgZXF4ID0gQSp4KioyICsgRCp4CiAgICBgYGAKICAgIAogICAgYGBge3J9CiAgICBtKCckJHt7ZXF4fX0kJCcpCiAgICBgYGAKCiogW0NvbXBsZXRhbmRvIG8gcXVhZHJhZG9dKGh0dHBzOi8vd3d3Lmdlb2dlYnJhLm9yZy9tL3NyZzVhcDg1KSwgaXN0byDDqSBpZ3VhbCBhOgoKICAgIGBgYHtweXRob259CiAgICBlcXggPSBjb21wbHNxKGVxeCwgeCkKICAgIGBgYAogICAgCiAgICBgYGB7cn0KICAgIG0oJyQke3tlcXh9fSQkJykKICAgIGBgYAoKKiBBZ29yYSwgc29tYW1vcyBlc3RhIGV4cHJlc3PDo28gY29tIG8gdGVybW8gZW0gJHkkIGUgbyB0ZXJtbyBpbmRlcGVuZGVudGUuIE8gcmVzdWx0YWRvIMOpIHVtYSBlcXVhw6fDo28gZXF1aXZhbGVudGUgw6Agb3JpZ2luYWw6CgogICAgYGBge3J9CiAgICBtKCckJHt7RXEoZXF4ICsgRSp5ICsgRiwgMCl9fSQkJykKICAgIGBgYAoKKiBSZWFycnVtYW5kbywgY2hlZ2Ftb3Mgw6AgZm9ybWEgY2Fuw7RuaWNhOgoKICAgIGBgYHtyfQogICAgbSgnJCR7e2VxX2Nhbm9uaWNhbH19JCQnKQogICAgYGBgCgo6OjoKCjo6OiB7LnJtZGJveCBsYXRleD0xfQoKQXMgcmVzcG9zdGFzIHBhcmEgdG9kb3Mgb3MgaXRlbnMgc8OjbzoKCmBgYHtweXRob259CmJvY2FzaW5mID0gWyBmaW5kX2Nhbm9uaWNhbF9lcShlcSkgZm9yIGVxIGluIGVxc19ib2NhaW5mIF0KZXFzX2JvY2FpbmYgPSBbIGNbJ2VxX2Nhbm9uaWNhbCddWzBdIGZvciBjIGluIGJvY2FzaW5mIF0KYGBgCgpgYGB7cn0KbSgKICAne3sgW2kgKyAxIGZvciBpIGluIGxpc3QocmFuZ2Uoci5uX2FsdW5vcykpXSB9fSAmICcsCiAgJ1xcZGlzcGxheXN0eWxlIHt7IGVxc19ib2NhaW5mIH19ICcsCiAgc2VwX21pZGRsZSA9ICcgXFxcXCBcbicsCiAgYmVmb3JlID0gcGFzdGUwKAogICAgJyQkIFxcYmVnaW57YXJyYXl9e3J8bH0nLAogICAgJyBcXGhsaW5lICcKICApLAogIGFmdGVyID0gJ1xcXFwgXFxobGluZSBcXGVuZHthcnJheX0gJCQnLAogIHNlcF9ibG9ja3MgPSAnXG4nCikKYGBgCgo6OjoKCiogRXNjcmV2YSB1bWEgW2luZXF1YcOnw6NvXXsuaGx9IHF1ZSByZXByZXNlbnRlIGEgcmVnacOjbyBkYSBib2NhIHF1ZSBlc3TDoSBbcHJlZW5jaGlkYSBlbSB2ZXJtZWxobyBuYSBmaWd1cmFdKCNmaWd1cmEpLgoKOjo6IHsucm1kYm94IGxhdGV4PTF9CgoqIFZhbW9zIHJlc29sdmVyIG8gaXRlbSAxLiBPcyBwYXNzb3Mgc8OjbyBvcyBtZXNtb3MgcGFyYSB0b2RvcyBvcyBpdGVuczsgc8OzIG11ZGFtIG9zIHZhbG9yZXMuCgoqIE9zIHBvbnRvcyBubyBpbnRlcmlvciBkYSBib2NhIHPDo28gZXhhdGFtZW50ZSBhcXVlbGVzIHF1ZSBlc3TDo28sIGFvIG1lc21vIHRlbXBvLCBhYmFpeG8gZGEgcGFydGUgc3VwZXJpb3IgZSBhY2ltYSBkYSBwYXJ0ZSBpbmZlcmlvci4KCiogU8OjbyBvcyBwb250b3MgJCh4LCB5KSQgcXVlIHNhdGlzZmF6ZW0gbyBzZWd1aW50ZSBzaXN0ZW1hIGRlIGluZXF1YcOnw7VlczoKCiAgJCQKICBcYmVnaW57Y2FzZXN9CiAgYHIgbSgne3sgZXFzX2JvY2FzdXBbMF0ubGhzIH19IDwge3sgZXFzX2JvY2FzdXBbMF0ucmhzIH19JylgIFxcCiAgYHIgbSgne3sgZXFzX2JvY2FpbmZbMF0ubGhzIH19ID4ge3sgZXFzX2JvY2FpbmZbMF0ucmhzIH19JylgCiAgXGVuZHtjYXNlc30KICAkJAoKOjo6Cgo6Ojogey5ybWRib3ggbGF0ZXg9MX0KCkFzIHJlc3Bvc3RhcyBwYXJhIHRvZG9zIG9zIGl0ZW5zIHPDo286CgpgYGB7cHl0aG9ufQplcXNfYm9jYXN1cF9sID0gWyBlcS5saHMgZm9yIGVxIGluIGVxc19ib2Nhc3VwIF0KZXFzX2JvY2FzdXBfciA9IFsgZXEucmhzIGZvciBlcSBpbiBlcXNfYm9jYXN1cCBdCmVxc19ib2NhaW5mX2wgPSBbIGVxLmxocyBmb3IgZXEgaW4gZXFzX2JvY2FpbmYgXQplcXNfYm9jYWluZl9yID0gWyBlcS5yaHMgZm9yIGVxIGluIGVxc19ib2NhaW5mIF0KYGBgCgpgYGB7cn0KbSgKICAne3sgW2kgKyAxIGZvciBpIGluIGxpc3QocmFuZ2Uoci5uX2FsdW5vcykpXSB9fSAmICcsCiAgJ1xcYmVnaW57Y2FzZXN9ICcsCiAgJ1xcZGlzcGxheXN0eWxlIHt7IGVxc19ib2Nhc3VwX2wgfX0gPCB7eyBlcXNfYm9jYXN1cF9yIH19IFxcXFwgJywKICAnXFxkaXNwbGF5c3R5bGUge3sgZXFzX2JvY2FpbmZfbCB9fSA+IHt7IGVxc19ib2NhaW5mX3IgfX0gJywKICAnXFxlbmR7Y2FzZXN9JywKICBzZXBfbWlkZGxlID0gJyBcXFxcIFxuJywKICBiZWZvcmUgPSBwYXN0ZTAoCiAgICAnJCQgXFxiZWdpbnthcnJheX17cnxsfScsCiAgICAnIFxcaGxpbmUgJwogICksCiAgYWZ0ZXIgPSAnXFxcXCBcXGhsaW5lIFxcZW5ke2FycmF5fSAkJCcsCiAgc2VwX2Jsb2NrcyA9ICdcbicKKQpgYGAKCjo6OgoKKiBObyBHZW9nZWJyYSwgZW50cmUgYSBpbmVxdWHDp8OjbyBlIGNvbmZpZ3VyZS1hIHBhcmEgcXVlIGEgw6FyZWEgc2VqYSBwcmVlbmNoaWRhIGVtIHZlcm1lbGhvLgoKCiMjIE9yZWxoYXMKCiogQXMgW29yZWxoYXNdey5obH0gc8OjbyBvcyByYW1vcyBkZSB1bWEgW2hpcMOpcmJvbGUgZGUgZWl4byByZWFsICAgICAgICAgIGhvcml6b250YWwsIGRlIGV4Y2VudHJpY2lkYWRlICQxMS8xMCRdey5obH0sIGN1am9zIFt2w6lydGljZXNdey5obH0gc8OjbyBvcyBbZG9pcyBwb250b3MgZG8gY8OtcmN1bG8gZG8gcm9zdG9dey5obH0gcXVlIHTDqm0gYSBbY29vcmRlbmFkYSAkeSQgaWd1YWwgYW8gdmFsb3IgYWJhaXhvXXsuaGx9IChbdmVqYSBvIHNldSBuw7ptZXJvICRuJCBuZXN0YSBsaXN0YV0oI251bXMpKS4KCiAgICBgYGB7cHl0aG9uIGVjaG89RkFMU0V9CiAgICB5b3JlbGhhID0geWMKICAgIAogICAgeW9yZWxoYXMgPSBbCiAgICAgIHlvcmVsaGEuc3Vicyh7eWM6IHl5LCByYzogcnJ9KSBmb3IgKHl5LCBycikgaW4gemlwKHIuZGYueWMsIHIuZGYucmMpCiAgICBdCiAgICBgYGAKICAgIAogICAgYGBge3IgZWNobz1GQUxTRX0KICAgIG0oCiAgICAgICcxLiAkXFxkaXNwbGF5c3R5bGUgXFxxdWFkIHkgPSB7e3lvcmVsaGFzfX0kXG5cblxuJwogICAgKQogICAgYGBgCiAgICAKKiBBY2hlIGEgW2VxdWHDp8OjbyBjYW7DtG5pY2Fdey5obH0gZGVzdGEgaGlww6lyYm9sZS4KCjo6OiB7LnJtZGJveCBsYXRleD0xfQoKKiBWYW1vcyByZXNvbHZlciBvIGl0ZW0gMS4gT3MgcGFzc29zIHPDo28gb3MgbWVzbW9zIHBhcmEgdG9kb3Mgb3MgaXRlbnM7IHPDsyBtdWRhbSBvcyB2YWxvcmVzLgoKKiBBIGVxdWHDp8OjbyBjYW7DtG5pY2EgZGUgdW1hIGhpcMOpcmJvbGUgZGUgZWl4byByZWFsIGhvcml6b250YWwgdGVtIGEgZm9ybWEKCiAgJCQKICBcZnJhY3soeCAtIGgpXjJ9e2FeMn0gLSBcZnJhY3soeSAtIGspXjJ9e2JeMn0gPSAxCiAgJCQKCiogQXF1aSwgbyBwb250byAkKGgsIGspJCDDqSBvIGNlbnRybywgcXVlIG7Do28gZm9pIGRhZG8uCgoqIE1hcywgc2Ugdm9jw6ogcHJlc3RhciBhdGVuw6fDo28sIHZhaSBub3RhciBxdWUgb3MgdsOpcnRpY2VzIGRhIGhpcMOpcmJvbGUgZXN0w6NvIG5hIG1lc21hIGhvcml6b250YWwgJCh5ID0gLTIpJCBxdWUgbyBjZW50cm8gZG8gcm9zdG8uCgoqIEVudMOjbywgY29tbyBhcyBvcmVsaGFzIHPDo28gc2ltw6l0cmljYXMgZW0gcmVsYcOnw6NvIGFvIGNlbnRybyBkbyByb3N0bywgbyBjZW50cm8gZGEgaGlww6lyYm9sZSDDqSBpZ3VhbCBhbyBjZW50cm8gZG8gY8OtcmN1bG8gZG8gcm9zdG86ICQoaCwgaykgPSAoLTEsIC0yKSQuCgoqIEEgZXhjZW50cmljaWRhZGUgZGUgdW1hIGhpcMOpcmJvbGUgw6kgICRlID0gYy9hJC4gTyBlbnVuY2lhZG8gZGl6IHF1ZSAkZSA9IDExLzEwJC4KCiogRGHDrSwgJGMvYSA9IDExLzEwJCwgbyBxdWUgZXF1aXZhbGUgYSBkaXplciBxdWUgJGMgPSAxMWEvMTAkLgoKKiBOYSBoaXDDqXJib2xlLCAkY14yID0gYV4yICsgYl4yJCwgbyBxdWUgZXF1aXZhbGUgYSBkaXplciBxdWUgJGJeMiA9IGNeMiAtIGFeMiQuCgoqIElzdG8gZXF1aXZhbGUgYSBkaXplciBxdWUgJGJeMiA9IFxmcmFjezEyMWFeMn17MTAwfSAtIGFeMiA9IFxmcmFjezIxYV4yfXsxMDB9JC4KCiogTGV2YW5kbyBlbSBjb250YSBhcyBpbmZvcm1hw6fDtWVzIGFjaW1hLCBhIGhpcMOpcmJvbGUgcXVlIHByb2N1cmFtb3Mgw6kKCiAgJCQKICBcZnJhY3soeCArIDEpXjJ9e2FeMn0gLSBcZnJhY3soeSArIDIpXjJ9ezIxYV4yIC8gMTAwfSA9IDEKICAkJAoKKiBQYXJhIGRlc2NvYnJpciBvIHZhbG9yIGRlICRhJCwgcG9kZW1vcyB1c2FyIG8gZmF0byBkZSBxdWUgb3MgdsOpcnRpY2VzIGRhIGhpcMOpcmJvbGUgdGFtYsOpbSBwZXJ0ZW5jZW0gYW8gY8OtcmN1bG8gZG8gcm9zdG8uCgoqIE91IHNlamEsIG9zIHBvbnRvcyAkKC00LCAtMikkIGUgJCgyLCAtMikkIHPDo28gb3MgdsOpcnRpY2VzIGRhIGhpcMOpcmJvbGUuCgoqIFVzYW5kbyBvIHNlZ3VuZG8gdsOpcnRpY2UsIHBvZGVyw61hbW9zIHN1YnN0aXR1aXIgJHgkIHBvciAkMiQgZSAkeSQgcG9yICQtMiQgZSByZXNvbHZlciBhIGVxdWHDp8OjbyBwYXJhIGFjaGFyIG8gdmFsb3IgZGUgJGEkLgoKKiBNYXMgbmVtIHByZWNpc2Ftb3MgZmF6ZXIgaXN0by4gW08gdmFsb3IgZGUgJGEkIMOpIGp1c3RhbWVudGUgYSBkaXN0w6JuY2lhIGVudHJlIG8gY2VudHJvIGUgbyB2w6lydGljZSBkYSBoaXDDqXJib2xlXXsuaGx9LCBlIGFjYWJhbW9zIGRlIG9ic2VydmFyIHF1ZSBlc3RhIGRpc3TDom5jaWEgw6kgbyByYWlvIGRvIGPDrXJjdWxvIGRvIHJvc3RvOiBvdSBzZWphLCAkYSA9IDMkLgoKKiBBIGVxdWHDp8OjbyBkYSBoaXDDqXJib2xlLCBmaWNhLCBlbnTDo28KCiAgJCQKICBcZnJhY3soeCArIDEpXjJ9ezl9IC0gXGZyYWN7KHkgKyAyKV4yfXsxODkgLyAxMDB9ID0gMQogICQkCgo6OjoKCjo6OiB7LnJtZGJveCBsYXRleD0xfQoKQXMgcmVzcG9zdGFzIHBhcmEgdG9kb3Mgb3MgaXRlbnMgc8OjbzoKCmBgYHtweXRob259CmRhdGFfZWFycyA9IFsgXAogICgoeCAtIGgpKioyLCAoeSAtIGspKioyLCByKioyLCBTKDIxKnIqKjIpIC8gMTAwKSBcCiAgZm9yIGgsIGssIHIgaW4gemlwKHIuZGYueGMsIHIuZGYueWMsIHIuZGYucmMpIFwKXQoKZXFzX2VhcnMgPSBbIFwKICBFcSggc3ltcGlmeSggXAogICAgJ251bXggLyBhMiAtIG51bXkgLyBiMicsIFwKICAgIGxvY2FscyA9IHsgJ251bXgnOiBudW14LCAnbnVteSc6IG51bXksICdhMic6IGEyLCAnYjInOiBiMiB9LCBcCiAgICBldmFsdWF0ZT1GYWxzZSksIDEpIFwKICBmb3IgbnVteCwgbnVteSwgYTIsIGIyIGluIGRhdGFfZWFycyBcCl0KYGBgCgpgYGB7cn0KbSgKICAne3sgW2kgKyAxIGZvciBpIGluIGxpc3QocmFuZ2Uoci5uX2FsdW5vcykpXSB9fSAmICcsCiAgJ1xcZGlzcGxheXN0eWxlIHt7IGVxc19lYXJzIH19ICcsCiAgc2VwX21pZGRsZSA9ICcgXFxcXCBcbicsCiAgYmVmb3JlID0gcGFzdGUwKAogICAgJyQkIFxcYmVnaW57YXJyYXl9e3J8bH0nLAogICAgJyBcXGhsaW5lICcKICApLAogIGFmdGVyID0gJ1xcXFwgXFxobGluZSBcXGVuZHthcnJheX0gJCQnLAogIHNlcF9ibG9ja3MgPSAnXG4nCikKYGBgCgo6OjoKCiogRXNjcmV2YSB1bWEgW2luZXF1YcOnw6NvXXsuaGx9IHF1ZSByZXByZXNlbnRlIGEgcmVnacOjbyBkYXMgb3JlbGhhcyBxdWUgZXN0w6EgW3ByZWVuY2hpZGEgZW0gcm9zYSBuYSBmaWd1cmFdKCNmaWd1cmEpLiBbQSBkaXN0w6JuY2lhICRkJCBlbnRyZSBvIGNlbnRybyBkbyByb3N0byBlIGEgYm9yZGEgdmVydGljYWwgZGUgY2FkYSBvcmVsaGEgw6kgYSBkYWRhIGFiYWl4b117LmhsfSAoW3ZlamEgbyBzZXUgbsO6bWVybyAkbiQgbmVzdGEgbGlzdGFdKCNudW1zKSkuCgogICAgYGBge3B5dGhvbiBlY2hvPUZBTFNFfQogICAgZG9yZWxoYSA9IDkqcmMgLyA4CiAgICAKICAgIGRvcmVsaGFzID0gWwogICAgICBkb3JlbGhhLnN1YnMoe3JjOiBycn0pIGZvciByciBpbiByLmRmLnJjCiAgICBdCiAgICBgYGAKICAgIAogICAgYGBge3IgZWNobz1GQUxTRX0KICAgIG0oCiAgICAgICcxLiAkXFxkaXNwbGF5c3R5bGUgXFxxdWFkIGQgPSB7e2RvcmVsaGFzfX0kXG5cblxuJwogICAgKQogICAgYGBgCiAgICAKOjo6IHsucm1kYm94IGxhdGV4PTF9CgoqIFZhbW9zIHJlc29sdmVyIG8gaXRlbSAxLiBPcyBwYXNzb3Mgc8OjbyBvcyBtZXNtb3MgcGFyYSB0b2RvcyBvcyBpdGVuczsgc8OzIG11ZGFtIG9zIHZhbG9yZXMuCgoqIExlbWJyYW5kbyBxdWUgbyBjZW50cm8gZG8gY8OtcmN1bG8gdGVtICR4ID0gLTEkLCBvcyBsaW1pdGVzIGRhcyBvcmVsaGFzIHPDo28gYXMgZHVhcyByZXRhcyB2ZXJ0aWNhaXMgCgogICQkeCA9IC0xIC0gMjcvOCA9IC0zNS84JCQKICAKICBlCgogICQkeCA9IC0xICsgMjcvOCA9IDE5LzgkJAoKKiBPIFtjYXDDrXR1bG8gJDEwJCBkbyBsaXZyb10oaHR0cHM6Ly9jYW5hbC5jZWNpZXJqLmVkdS5ici9yZWN1cnNvLzQ2OTApIGRpeiBxdWUgb3MgcG9udG9zIHF1ZSBlc3TDo28gbmFzIG1lc21hcyByZWdpw7VlcyBxdWUgb3MgZm9jb3MgZGEgaGlww6lyYm9sZSAob3Ugc2VqYSwgbmFzIG9yZWxoYXMpIHNhdGlzZmF6ZW0gYSBpbmVxdWHDp8OjbwoKICAkJAogIFxmcmFjeyh4ICsgMSleMn17OX0gLSBcZnJhY3soeSArIDIpXjJ9ezE4OSAvIDEwMH0gPiAxCiAgJCQKCiogQXNzaW0sIGEgcGFydGUgc29tYnJlYWRhIGRhcyBvcmVsaGFzIGNvcnJlc3BvbmRlIGFvcyBwb250b3MgcXVlIHNhdGlzZmF6ZW0gbyBzaXN0ZW1hIGRlIGluZXF1YcOnw7VlcwoKICAkJAogIFxiZWdpbntjYXNlc30KICAgIFxkaXNwbGF5c3R5bGUgXGZyYWN7KHggKyAxKV4yfXs5fSAtIFxmcmFjeyh5ICsgMileMn17MTg5IC8gMTAwfSA+IDEgXFwKICAgIFxkaXNwbGF5c3R5bGUgeCA+IFxmcmFjey0zNX17OH0gXFwKICAgIFxkaXNwbGF5c3R5bGUgeCA8IFxmcmFjezE5fXs4fQogIFxlbmR7Y2FzZXN9CiAgJCQKCjo6OgoKOjo6IHsucm1kYm94IGxhdGV4PTF9CgpBcyByZXNwb3N0YXMgcGFyYSB0b2RvcyBvcyBpdGVucyBzw6NvOgoKYGBge3B5dGhvbn0KaW5lcSA9IFsgR3QoZS5saHMsIGUucmhzKSBmb3IgZSBpbiBlcXNfZWFycyBdCmxpbmUxID0gWyBHdCh4LCB4YyAtIGQpIGZvciB4YywgZCBpbiB6aXAoci5kZi54YywgZG9yZWxoYXMpIF0KbGluZTIgPSBbIEx0KHgsIHhjICsgZCkgZm9yIHhjLCBkIGluIHppcChyLmRmLnhjLCBkb3JlbGhhcykgXQpgYGAKCmBgYHtyfQptKAogICd7eyBbaSArIDEgZm9yIGkgaW4gbGlzdChyYW5nZShyLm5fYWx1bm9zKSldIH19ICYgJywKICAnXFxiZWdpbntjYXNlc30gJywKICAnXFxkaXNwbGF5c3R5bGUge3sgaW5lcSB9fSBcXFxcICcsCiAgJ1xcZGlzcGxheXN0eWxlIHt7IGxpbmUxIH19IFxcXFwgJywKICAnXFxkaXNwbGF5c3R5bGUge3sgbGluZTIgfX0gJywKICAnXFxlbmR7Y2FzZXN9JywKICBzZXBfbWlkZGxlID0gJyBcXFxcIFxuJywKICBiZWZvcmUgPSBwYXN0ZTAoCiAgICAnJCQgXFxiZWdpbnthcnJheX17cnxsfScsCiAgICAnIFxcaGxpbmUgJwogICksCiAgYWZ0ZXIgPSAnXFxcXCBcXGhsaW5lIFxcZW5ke2FycmF5fSAkJCcsCiAgc2VwX2Jsb2NrcyA9ICdcbicKKQpgYGAKCjo6OgoKKiBObyBHZW9nZWJyYSwgZW50cmUgYSBpbmVxdWHDp8OjbyBlIGNvbmZpZ3VyZS1hIHBhcmEgcXVlIGEgw6FyZWEgc2VqYSBwcmVlbmNoaWRhIGVtIHJvc2EuCgoKIyBOw7ptZXJvcyBkb3MgYWx1bm9zLCBwb3IgbWF0csOtY3VsYSB7ICNudW1zIH0KCmBgYHtyIGVjaG89RkFMU0V9CmRmICU+JSAKICBzZWxlY3QobWF0csOtY3VsYSwgbikgJT4lIAogIGFycmFuZ2UobWF0csOtY3VsYSkgJT4lIAogIGtibCgpICU+JSAKICBrYWJsZV9wYXBlcigKICAgIGMoJ3N0cmlwZWQnLCAnaG92ZXInKSwKICAgIGZ1bGxfd2lkdGggPSBGQUxTRQogICkKYGBgCgo=