Fique à vontade para consultar os coleguinhas e para usar programas como o Geogebra, mas somente soluções analíticas serão aceitas — nada de responder no olhômetro.
Uma solução analítica é aquela em que você detalha todos os passos intermediários: não vale resolver tudo no Geogebra e apresentar o resultado final; é preciso mostrar o passo-a-passo.
Entregue (via Moodle) sua resolução escrita no formato que você preferir: manuscrito escaneado ou fotografado, documento gerado via \(\LaTeX\) etc. O importante é que a resolução esteja legível. Se você for fotografar sua resolução, use um aplicativo como Clear Scan para gerar um resultado melhor.
Além da resolução por escrito, entregue também (via Moodle) um arquivo contendo um vídeo de no máximo 5 minutos onde você explica em detalhes a resolução de uma parte da sua questão.
Bom trabalho.
Os dados da sua questão dependem do valor de \(n\) sorteado para você.
Veja o seu valor de \(n\) nesta lista.
Você vai achar equações de cônicas que são o rosto, os olhos, o nariz, a boca e as orelhas de um emoji no \(\mathbb{R}^2\).
Além disso, você vai achar inequações envolvendo cônicas que correspondem às áreas preenchidas da boca e das orelhas.
Em todos os seus cálculos e respostas, use frações e radicais.
Não use valores numéricos com vírgulas decimais em momento algum.
Seu emoji vai ficar assim:
O rosto é o círculo de equação geral dada abaixo (veja o seu número \(n\) nesta lista).
Ache a equação canônica deste círculo.
\(\displaystyle \quad x^{2} + 2 x + y^{2} + 4 y - 4 = 0\)
\(\displaystyle \quad x^{2} + 2 x + y^{2} + 4 y + 4 = 0\)
\(\displaystyle \quad x^{2} - 4 x + y^{2} - 4 y - 1 = 0\)
\(\displaystyle \quad x^{2} - 2 x + y^{2} + 2 y + 1 = 0\)
\(\displaystyle \quad x^{2} - 4 x + y^{2} - 2 y + 1 = 0\)
\(\displaystyle \quad x^{2} - 2 x + y^{2} - 2 y - 2 = 0\)
\(\displaystyle \quad x^{2} + 4 x + y^{2} + 4 y - 1 = 0\)
\(\displaystyle \quad x^{2} - 4 x + y^{2} - 4 y - 8 = 0\)
\(\displaystyle \quad x^{2} + 4 x + y^{2} - 4 y + 7 = 0\)
\(\displaystyle \quad x^{2} + 2 x + y^{2} - 4 y - 4 = 0\)
\(\displaystyle \quad x^{2} - 4 x + y^{2} - 2 y - 11 = 0\)
\(\displaystyle \quad x^{2} - 4 x + y^{2} + 4 y + 7 = 0\)
\(\displaystyle \quad x^{2} + 4 x + y^{2} - 2 y + 1 = 0\)
\(\displaystyle \quad x^{2} - 2 x + y^{2} - 2 y - 7 = 0\)
\(\displaystyle \quad x^{2} + 2 x + y^{2} - 2 y - 7 = 0\)
\(\displaystyle \quad x^{2} - 2 x + y^{2} + 4 y + 1 = 0\)
\(\displaystyle \quad x^{2} - 2 x + y^{2} - 2 y - 14 = 0\)
\(\displaystyle \quad x^{2} - 2 x + y^{2} + 4 y - 4 = 0\)
\(\displaystyle \quad x^{2} - 2 x + y^{2} - 4 y + 4 = 0\)
\(\displaystyle \quad x^{2} + 2 x + y^{2} + 2 y - 2 = 0\)
\(\displaystyle \quad x^{2} - 4 x + y^{2} - 2 y - 4 = 0\)
\(\displaystyle \quad x^{2} + 2 x + y^{2} + 2 y - 7 = 0\)
\(\displaystyle \quad x^{2} - 4 x + y^{2} + 2 y - 4 = 0\)
\(\displaystyle \quad x^{2} + 2 x + y^{2} - 2 y - 2 = 0\)
\(\displaystyle \quad x^{2} + 4 x + y^{2} + 2 y - 4 = 0\)
\(\displaystyle \quad x^{2} + 4 x + y^{2} - 4 y - 1 = 0\)
\(\displaystyle \quad x^{2} - 4 x + y^{2} - 4 y + 7 = 0\)
\(\displaystyle \quad x^{2} - 4 x + y^{2} + 4 y - 1 = 0\)
\(\displaystyle \quad x^{2} + 4 x + y^{2} - 2 y - 11 = 0\)
\(\displaystyle \quad x^{2} - 2 x + y^{2} - 2 y + 1 = 0\)
\(\displaystyle \quad x^{2} + 2 x + y^{2} + 2 y - 14 = 0\)
\(\displaystyle \quad x^{2} + 4 x + y^{2} + 2 y + 4 = 0\)
\(\displaystyle \quad x^{2} + 4 x + y^{2} - 2 y - 4 = 0\)
\(\displaystyle \quad x^{2} + 4 x + y^{2} + 4 y - 8 = 0\)
\(\displaystyle \quad x^{2} + 2 x + y^{2} - 2 y + 1 = 0\)
\(\displaystyle \quad x^{2} + 2 x + y^{2} - 4 y - 11 = 0\)
\(\displaystyle \quad x^{2} - 4 x + y^{2} - 4 y + 4 = 0\)
\(\displaystyle \quad x^{2} - 4 x + y^{2} + 2 y + 1 = 0\)
\(\displaystyle \quad x^{2} - 4 x + y^{2} + 4 y - 8 = 0\)
\(\displaystyle \quad x^{2} - 2 x + y^{2} + 2 y - 7 = 0\)
\(\displaystyle \quad x^{2} - 2 x + y^{2} + 2 y - 14 = 0\)
\(\displaystyle \quad x^{2} - 2 x + y^{2} - 4 y - 4 = 0\)
Vamos resolver o item \(1\). Os passos são os mesmos para todos os itens; só mudam os valores.
A equação é
\[x^{2} + 2 x + y^{2} + 4 y - 4\]
Vamos separar os termos em \(x\):
\[x^{2} + 2 x\]
Completando o quadrado, isto é igual a:
\[\left(x + 1\right)^{2} - 1\]
Vamos separar os termos em \(y\):
\[y^{2} + 4 y\]
Completando o quadrado, isto é igual a:
\[\left(y + 2\right)^{2} - 4\]
Agora, somamos estas duas expressões (mais o termo independente da equação original).
O resultado é uma equação equivalente à original:
\[\left(x + 1\right)^{2} + \left(y + 2\right)^{2} - 9 = 0\]
Jogando o termo independente para o lado direito, chegamos à forma canônica da equação do círculo:
\[\left(x + 1\right)^{2} + \left(y + 2\right)^{2} = 9\]
As respostas para todos os itens são:
\[ \begin{array}{r|lll} & \textbf{Geral} & \qquad & \textbf{Canônica} \\ \hline 1 & x^{2} + 2 x + y^{2} + 4 y - 4 = 0 & & \left(x + 1\right)^{2} + \left(y + 2\right)^{2} = 9 \\ 2 & x^{2} + 2 x + y^{2} + 4 y + 4 = 0 & & \left(x + 1\right)^{2} + \left(y + 2\right)^{2} = 1 \\ 3 & x^{2} - 4 x + y^{2} - 4 y - 1 = 0 & & \left(x - 2\right)^{2} + \left(y - 2\right)^{2} = 9 \\ 4 & x^{2} - 2 x + y^{2} + 2 y + 1 = 0 & & \left(x - 1\right)^{2} + \left(y + 1\right)^{2} = 1 \\ 5 & x^{2} - 4 x + y^{2} - 2 y + 1 = 0 & & \left(x - 2\right)^{2} + \left(y - 1\right)^{2} = 4 \\ 6 & x^{2} - 2 x + y^{2} - 2 y - 2 = 0 & & \left(x - 1\right)^{2} + \left(y - 1\right)^{2} = 4 \\ 7 & x^{2} + 4 x + y^{2} + 4 y - 1 = 0 & & \left(x + 2\right)^{2} + \left(y + 2\right)^{2} = 9 \\ 8 & x^{2} - 4 x + y^{2} - 4 y - 8 = 0 & & \left(x - 2\right)^{2} + \left(y - 2\right)^{2} = 16 \\ 9 & x^{2} + 4 x + y^{2} - 4 y + 7 = 0 & & \left(x + 2\right)^{2} + \left(y - 2\right)^{2} = 1 \\ 10 & x^{2} + 2 x + y^{2} - 4 y - 4 = 0 & & \left(x + 1\right)^{2} + \left(y - 2\right)^{2} = 9 \\ 11 & x^{2} - 4 x + y^{2} - 2 y - 11 = 0 & & \left(x - 2\right)^{2} + \left(y - 1\right)^{2} = 16 \\ 12 & x^{2} - 4 x + y^{2} + 4 y + 7 = 0 & & \left(x - 2\right)^{2} + \left(y + 2\right)^{2} = 1 \\ 13 & x^{2} + 4 x + y^{2} - 2 y + 1 = 0 & & \left(x + 2\right)^{2} + \left(y - 1\right)^{2} = 4 \\ 14 & x^{2} - 2 x + y^{2} - 2 y - 7 = 0 & & \left(x - 1\right)^{2} + \left(y - 1\right)^{2} = 9 \\ 15 & x^{2} + 2 x + y^{2} - 2 y - 7 = 0 & & \left(x + 1\right)^{2} + \left(y - 1\right)^{2} = 9 \\ 16 & x^{2} - 2 x + y^{2} + 4 y + 1 = 0 & & \left(x - 1\right)^{2} + \left(y + 2\right)^{2} = 4 \\ 17 & x^{2} - 2 x + y^{2} - 2 y - 14 = 0 & & \left(x - 1\right)^{2} + \left(y - 1\right)^{2} = 16 \\ 18 & x^{2} - 2 x + y^{2} + 4 y - 4 = 0 & & \left(x - 1\right)^{2} + \left(y + 2\right)^{2} = 9 \\ 19 & x^{2} - 2 x + y^{2} - 4 y + 4 = 0 & & \left(x - 1\right)^{2} + \left(y - 2\right)^{2} = 1 \\ 20 & x^{2} + 2 x + y^{2} + 2 y - 2 = 0 & & \left(x + 1\right)^{2} + \left(y + 1\right)^{2} = 4 \\ 21 & x^{2} - 4 x + y^{2} - 2 y - 4 = 0 & & \left(x - 2\right)^{2} + \left(y - 1\right)^{2} = 9 \\ 22 & x^{2} + 2 x + y^{2} + 2 y - 7 = 0 & & \left(x + 1\right)^{2} + \left(y + 1\right)^{2} = 9 \\ 23 & x^{2} - 4 x + y^{2} + 2 y - 4 = 0 & & \left(x - 2\right)^{2} + \left(y + 1\right)^{2} = 9 \\ 24 & x^{2} + 2 x + y^{2} - 2 y - 2 = 0 & & \left(x + 1\right)^{2} + \left(y - 1\right)^{2} = 4 \\ 25 & x^{2} + 4 x + y^{2} + 2 y - 4 = 0 & & \left(x + 2\right)^{2} + \left(y + 1\right)^{2} = 9 \\ 26 & x^{2} + 4 x + y^{2} - 4 y - 1 = 0 & & \left(x + 2\right)^{2} + \left(y - 2\right)^{2} = 9 \\ 27 & x^{2} - 4 x + y^{2} - 4 y + 7 = 0 & & \left(x - 2\right)^{2} + \left(y - 2\right)^{2} = 1 \\ 28 & x^{2} - 4 x + y^{2} + 4 y - 1 = 0 & & \left(x - 2\right)^{2} + \left(y + 2\right)^{2} = 9 \\ 29 & x^{2} + 4 x + y^{2} - 2 y - 11 = 0 & & \left(x + 2\right)^{2} + \left(y - 1\right)^{2} = 16 \\ 30 & x^{2} - 2 x + y^{2} - 2 y + 1 = 0 & & \left(x - 1\right)^{2} + \left(y - 1\right)^{2} = 1 \\ 31 & x^{2} + 2 x + y^{2} + 2 y - 14 = 0 & & \left(x + 1\right)^{2} + \left(y + 1\right)^{2} = 16 \\ 32 & x^{2} + 4 x + y^{2} + 2 y + 4 = 0 & & \left(x + 2\right)^{2} + \left(y + 1\right)^{2} = 1 \\ 33 & x^{2} + 4 x + y^{2} - 2 y - 4 = 0 & & \left(x + 2\right)^{2} + \left(y - 1\right)^{2} = 9 \\ 34 & x^{2} + 4 x + y^{2} + 4 y - 8 = 0 & & \left(x + 2\right)^{2} + \left(y + 2\right)^{2} = 16 \\ 35 & x^{2} + 2 x + y^{2} - 2 y + 1 = 0 & & \left(x + 1\right)^{2} + \left(y - 1\right)^{2} = 1 \\ 36 & x^{2} + 2 x + y^{2} - 4 y - 11 = 0 & & \left(x + 1\right)^{2} + \left(y - 2\right)^{2} = 16 \\ 37 & x^{2} - 4 x + y^{2} - 4 y + 4 = 0 & & \left(x - 2\right)^{2} + \left(y - 2\right)^{2} = 4 \\ 38 & x^{2} - 4 x + y^{2} + 2 y + 1 = 0 & & \left(x - 2\right)^{2} + \left(y + 1\right)^{2} = 4 \\ 39 & x^{2} - 4 x + y^{2} + 4 y - 8 = 0 & & \left(x - 2\right)^{2} + \left(y + 2\right)^{2} = 16 \\ 40 & x^{2} - 2 x + y^{2} + 2 y - 7 = 0 & & \left(x - 1\right)^{2} + \left(y + 1\right)^{2} = 9 \\ 41 & x^{2} - 2 x + y^{2} + 2 y - 14 = 0 & & \left(x - 1\right)^{2} + \left(y + 1\right)^{2} = 16 \\ 42 & x^{2} - 2 x + y^{2} - 4 y - 4 = 0 & & \left(x - 1\right)^{2} + \left(y - 2\right)^{2} = 9 \\ \hline \end{array} \]
O nariz é a elipse de eixo maior horizontal com as coordenadas do centro, valores de \(a\) e de \(c\) dados abaixo (veja o seu número \(n\) nesta lista).
Ache a equação canônica desta elipse.
\(\displaystyle \quad \text{Centro} = \left( -1; \ -2\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)
\(\displaystyle \quad \text{Centro} = \left( -1; \ -2\right)\ ,\quad a = \frac{11}{100}\ ,\quad c = \frac{1}{10}\)
\(\displaystyle \quad \text{Centro} = \left( 2; \ 2\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)
\(\displaystyle \quad \text{Centro} = \left( 1; \ -1\right)\ ,\quad a = \frac{11}{100}\ ,\quad c = \frac{1}{10}\)
\(\displaystyle \quad \text{Centro} = \left( 2; \ 1\right)\ ,\quad a = \frac{11}{50}\ ,\quad c = \frac{1}{5}\)
\(\displaystyle \quad \text{Centro} = \left( 1; \ 1\right)\ ,\quad a = \frac{11}{50}\ ,\quad c = \frac{1}{5}\)
\(\displaystyle \quad \text{Centro} = \left( -2; \ -2\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)
\(\displaystyle \quad \text{Centro} = \left( 2; \ 2\right)\ ,\quad a = \frac{11}{25}\ ,\quad c = \frac{2}{5}\)
\(\displaystyle \quad \text{Centro} = \left( -2; \ 2\right)\ ,\quad a = \frac{11}{100}\ ,\quad c = \frac{1}{10}\)
\(\displaystyle \quad \text{Centro} = \left( -1; \ 2\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)
\(\displaystyle \quad \text{Centro} = \left( 2; \ 1\right)\ ,\quad a = \frac{11}{25}\ ,\quad c = \frac{2}{5}\)
\(\displaystyle \quad \text{Centro} = \left( 2; \ -2\right)\ ,\quad a = \frac{11}{100}\ ,\quad c = \frac{1}{10}\)
\(\displaystyle \quad \text{Centro} = \left( -2; \ 1\right)\ ,\quad a = \frac{11}{50}\ ,\quad c = \frac{1}{5}\)
\(\displaystyle \quad \text{Centro} = \left( 1; \ 1\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)
\(\displaystyle \quad \text{Centro} = \left( -1; \ 1\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)
\(\displaystyle \quad \text{Centro} = \left( 1; \ -2\right)\ ,\quad a = \frac{11}{50}\ ,\quad c = \frac{1}{5}\)
\(\displaystyle \quad \text{Centro} = \left( 1; \ 1\right)\ ,\quad a = \frac{11}{25}\ ,\quad c = \frac{2}{5}\)
\(\displaystyle \quad \text{Centro} = \left( 1; \ -2\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)
\(\displaystyle \quad \text{Centro} = \left( 1; \ 2\right)\ ,\quad a = \frac{11}{100}\ ,\quad c = \frac{1}{10}\)
\(\displaystyle \quad \text{Centro} = \left( -1; \ -1\right)\ ,\quad a = \frac{11}{50}\ ,\quad c = \frac{1}{5}\)
\(\displaystyle \quad \text{Centro} = \left( 2; \ 1\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)
\(\displaystyle \quad \text{Centro} = \left( -1; \ -1\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)
\(\displaystyle \quad \text{Centro} = \left( 2; \ -1\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)
\(\displaystyle \quad \text{Centro} = \left( -1; \ 1\right)\ ,\quad a = \frac{11}{50}\ ,\quad c = \frac{1}{5}\)
\(\displaystyle \quad \text{Centro} = \left( -2; \ -1\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)
\(\displaystyle \quad \text{Centro} = \left( -2; \ 2\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)
\(\displaystyle \quad \text{Centro} = \left( 2; \ 2\right)\ ,\quad a = \frac{11}{100}\ ,\quad c = \frac{1}{10}\)
\(\displaystyle \quad \text{Centro} = \left( 2; \ -2\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)
\(\displaystyle \quad \text{Centro} = \left( -2; \ 1\right)\ ,\quad a = \frac{11}{25}\ ,\quad c = \frac{2}{5}\)
\(\displaystyle \quad \text{Centro} = \left( 1; \ 1\right)\ ,\quad a = \frac{11}{100}\ ,\quad c = \frac{1}{10}\)
\(\displaystyle \quad \text{Centro} = \left( -1; \ -1\right)\ ,\quad a = \frac{11}{25}\ ,\quad c = \frac{2}{5}\)
\(\displaystyle \quad \text{Centro} = \left( -2; \ -1\right)\ ,\quad a = \frac{11}{100}\ ,\quad c = \frac{1}{10}\)
\(\displaystyle \quad \text{Centro} = \left( -2; \ 1\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)
\(\displaystyle \quad \text{Centro} = \left( -2; \ -2\right)\ ,\quad a = \frac{11}{25}\ ,\quad c = \frac{2}{5}\)
\(\displaystyle \quad \text{Centro} = \left( -1; \ 1\right)\ ,\quad a = \frac{11}{100}\ ,\quad c = \frac{1}{10}\)
\(\displaystyle \quad \text{Centro} = \left( -1; \ 2\right)\ ,\quad a = \frac{11}{25}\ ,\quad c = \frac{2}{5}\)
\(\displaystyle \quad \text{Centro} = \left( 2; \ 2\right)\ ,\quad a = \frac{11}{50}\ ,\quad c = \frac{1}{5}\)
\(\displaystyle \quad \text{Centro} = \left( 2; \ -1\right)\ ,\quad a = \frac{11}{50}\ ,\quad c = \frac{1}{5}\)
\(\displaystyle \quad \text{Centro} = \left( 2; \ -2\right)\ ,\quad a = \frac{11}{25}\ ,\quad c = \frac{2}{5}\)
\(\displaystyle \quad \text{Centro} = \left( 1; \ -1\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)
\(\displaystyle \quad \text{Centro} = \left( 1; \ -1\right)\ ,\quad a = \frac{11}{25}\ ,\quad c = \frac{2}{5}\)
\(\displaystyle \quad \text{Centro} = \left( 1; \ 2\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)
Você percebeu que o centro da elipse do nariz é exatamente o centro do círculo do rosto?
Vamos resolver o item \(1\). Os passos são os mesmos para todos os itens; só mudam os valores.
A equação canônica de uma elipse com eixo maior horizontal é da forma
\[ \frac{(x - h)^2}{a^2} + \frac{(y - k)^2}{b^2} = 1 \]
onde \((h, k)\) é o centro, que foi dado.
O valor de \(a\) foi dado.
O valor de \(b\) pode ser calculado como \(b = \sqrt{a^2 - c^2}\), com \(c\) dado.
Usando os valores do item \(1\):
Centro \({} = \left( -1; \ -2\right)\)
\(a = \frac{33}{100}\)
\(c = \frac{3}{10}\)
Calculamos \(b = \frac{3 \sqrt{21}}{100}\)
E a equação fica
\[\frac{\left(x + 1\right)^{2}}{\frac{1089}{10000}} + \frac{\left(y + 2\right)^{2}}{\frac{189}{10000}} = 1\]
As respostas para todos os itens são:
\[ \begin{array}{r|l} \hline 1 & \displaystyle \frac{\left(x + 1\right)^{2}}{\frac{1089}{10000}} + \frac{\left(y + 2\right)^{2}}{\frac{189}{10000}} = 1 \\ 2 & \displaystyle \frac{\left(x + 1\right)^{2}}{\frac{121}{10000}} + \frac{\left(y + 2\right)^{2}}{\frac{21}{10000}} = 1 \\ 3 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{1089}{10000}} + \frac{\left(y - 2\right)^{2}}{\frac{189}{10000}} = 1 \\ 4 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{121}{10000}} + \frac{\left(y + 1\right)^{2}}{\frac{21}{10000}} = 1 \\ 5 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{121}{2500}} + \frac{\left(y - 1\right)^{2}}{\frac{21}{2500}} = 1 \\ 6 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{121}{2500}} + \frac{\left(y - 1\right)^{2}}{\frac{21}{2500}} = 1 \\ 7 & \displaystyle \frac{\left(x + 2\right)^{2}}{\frac{1089}{10000}} + \frac{\left(y + 2\right)^{2}}{\frac{189}{10000}} = 1 \\ 8 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{121}{625}} + \frac{\left(y - 2\right)^{2}}{\frac{21}{625}} = 1 \\ 9 & \displaystyle \frac{\left(x + 2\right)^{2}}{\frac{121}{10000}} + \frac{\left(y - 2\right)^{2}}{\frac{21}{10000}} = 1 \\ 10 & \displaystyle \frac{\left(x + 1\right)^{2}}{\frac{1089}{10000}} + \frac{\left(y - 2\right)^{2}}{\frac{189}{10000}} = 1 \\ 11 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{121}{625}} + \frac{\left(y - 1\right)^{2}}{\frac{21}{625}} = 1 \\ 12 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{121}{10000}} + \frac{\left(y + 2\right)^{2}}{\frac{21}{10000}} = 1 \\ 13 & \displaystyle \frac{\left(x + 2\right)^{2}}{\frac{121}{2500}} + \frac{\left(y - 1\right)^{2}}{\frac{21}{2500}} = 1 \\ 14 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{1089}{10000}} + \frac{\left(y - 1\right)^{2}}{\frac{189}{10000}} = 1 \\ 15 & \displaystyle \frac{\left(x + 1\right)^{2}}{\frac{1089}{10000}} + \frac{\left(y - 1\right)^{2}}{\frac{189}{10000}} = 1 \\ 16 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{121}{2500}} + \frac{\left(y + 2\right)^{2}}{\frac{21}{2500}} = 1 \\ 17 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{121}{625}} + \frac{\left(y - 1\right)^{2}}{\frac{21}{625}} = 1 \\ 18 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{1089}{10000}} + \frac{\left(y + 2\right)^{2}}{\frac{189}{10000}} = 1 \\ 19 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{121}{10000}} + \frac{\left(y - 2\right)^{2}}{\frac{21}{10000}} = 1 \\ 20 & \displaystyle \frac{\left(x + 1\right)^{2}}{\frac{121}{2500}} + \frac{\left(y + 1\right)^{2}}{\frac{21}{2500}} = 1 \\ 21 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{1089}{10000}} + \frac{\left(y - 1\right)^{2}}{\frac{189}{10000}} = 1 \\ 22 & \displaystyle \frac{\left(x + 1\right)^{2}}{\frac{1089}{10000}} + \frac{\left(y + 1\right)^{2}}{\frac{189}{10000}} = 1 \\ 23 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{1089}{10000}} + \frac{\left(y + 1\right)^{2}}{\frac{189}{10000}} = 1 \\ 24 & \displaystyle \frac{\left(x + 1\right)^{2}}{\frac{121}{2500}} + \frac{\left(y - 1\right)^{2}}{\frac{21}{2500}} = 1 \\ 25 & \displaystyle \frac{\left(x + 2\right)^{2}}{\frac{1089}{10000}} + \frac{\left(y + 1\right)^{2}}{\frac{189}{10000}} = 1 \\ 26 & \displaystyle \frac{\left(x + 2\right)^{2}}{\frac{1089}{10000}} + \frac{\left(y - 2\right)^{2}}{\frac{189}{10000}} = 1 \\ 27 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{121}{10000}} + \frac{\left(y - 2\right)^{2}}{\frac{21}{10000}} = 1 \\ 28 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{1089}{10000}} + \frac{\left(y + 2\right)^{2}}{\frac{189}{10000}} = 1 \\ 29 & \displaystyle \frac{\left(x + 2\right)^{2}}{\frac{121}{625}} + \frac{\left(y - 1\right)^{2}}{\frac{21}{625}} = 1 \\ 30 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{121}{10000}} + \frac{\left(y - 1\right)^{2}}{\frac{21}{10000}} = 1 \\ 31 & \displaystyle \frac{\left(x + 1\right)^{2}}{\frac{121}{625}} + \frac{\left(y + 1\right)^{2}}{\frac{21}{625}} = 1 \\ 32 & \displaystyle \frac{\left(x + 2\right)^{2}}{\frac{121}{10000}} + \frac{\left(y + 1\right)^{2}}{\frac{21}{10000}} = 1 \\ 33 & \displaystyle \frac{\left(x + 2\right)^{2}}{\frac{1089}{10000}} + \frac{\left(y - 1\right)^{2}}{\frac{189}{10000}} = 1 \\ 34 & \displaystyle \frac{\left(x + 2\right)^{2}}{\frac{121}{625}} + \frac{\left(y + 2\right)^{2}}{\frac{21}{625}} = 1 \\ 35 & \displaystyle \frac{\left(x + 1\right)^{2}}{\frac{121}{10000}} + \frac{\left(y - 1\right)^{2}}{\frac{21}{10000}} = 1 \\ 36 & \displaystyle \frac{\left(x + 1\right)^{2}}{\frac{121}{625}} + \frac{\left(y - 2\right)^{2}}{\frac{21}{625}} = 1 \\ 37 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{121}{2500}} + \frac{\left(y - 2\right)^{2}}{\frac{21}{2500}} = 1 \\ 38 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{121}{2500}} + \frac{\left(y + 1\right)^{2}}{\frac{21}{2500}} = 1 \\ 39 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{121}{625}} + \frac{\left(y + 2\right)^{2}}{\frac{21}{625}} = 1 \\ 40 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{1089}{10000}} + \frac{\left(y + 1\right)^{2}}{\frac{189}{10000}} = 1 \\ 41 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{121}{625}} + \frac{\left(y + 1\right)^{2}}{\frac{21}{625}} = 1 \\ 42 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{1089}{10000}} + \frac{\left(y - 2\right)^{2}}{\frac{189}{10000}} = 1 \\ \hline \end{array} \]
Os centros dos olhos são os focos da elipse com equação geral dada abaixo (veja o seu número \(n\) nesta lista).
Ache a equação canônica e as coordenadas dos focos desta elipse.
\(\displaystyle \quad x^{2} + 2 x + \frac{121 y^{2}}{21} + \frac{242 y}{15} + \frac{2297}{240} = 0\)
\(\displaystyle \quad x^{2} + 2 x + \frac{121 y^{2}}{21} + \frac{726 y}{35} + \frac{2169}{112} = 0\)
\(\displaystyle \quad x^{2} - 4 x + \frac{121 y^{2}}{21} - \frac{3146 y}{105} + \frac{67583}{1680} = 0\)
\(\displaystyle \quad x^{2} - 2 x + \frac{121 y^{2}}{21} + \frac{968 y}{105} + \frac{7367}{1680} = 0\)
\(\displaystyle \quad x^{2} - 4 x + \frac{121 y^{2}}{21} - \frac{242 y}{15} + \frac{169}{12} = 0\)
\(\displaystyle \quad x^{2} - 2 x + \frac{121 y^{2}}{21} - \frac{242 y}{15} + \frac{133}{12} = 0\)
\(\displaystyle \quad x^{2} + 4 x + \frac{121 y^{2}}{21} + \frac{242 y}{15} + \frac{3017}{240} = 0\)
\(\displaystyle \quad x^{2} - 4 x + \frac{121 y^{2}}{21} - \frac{484 y}{15} + \frac{133}{3} = 0\)
\(\displaystyle \quad x^{2} + 4 x + \frac{121 y^{2}}{21} - \frac{2662 y}{105} + \frac{53063}{1680} = 0\)
\(\displaystyle \quad x^{2} + 2 x + \frac{121 y^{2}}{21} - \frac{3146 y}{105} + \frac{62543}{1680} = 0\)
\(\displaystyle \quad x^{2} - 4 x + \frac{121 y^{2}}{21} - \frac{726 y}{35} + \frac{624}{35} = 0\)
\(\displaystyle \quad x^{2} - 4 x + \frac{121 y^{2}}{21} + \frac{726 y}{35} + \frac{2505}{112} = 0\)
\(\displaystyle \quad x^{2} + 4 x + \frac{121 y^{2}}{21} - \frac{242 y}{15} + \frac{169}{12} = 0\)
\(\displaystyle \quad x^{2} - 2 x + \frac{121 y^{2}}{21} - \frac{1936 y}{105} + \frac{21887}{1680} = 0\)
\(\displaystyle \quad x^{2} + 2 x + \frac{121 y^{2}}{21} - \frac{1936 y}{105} + \frac{21887}{1680} = 0\)
\(\displaystyle \quad x^{2} - 2 x + \frac{121 y^{2}}{21} + \frac{1936 y}{105} + \frac{6107}{420} = 0\)
\(\displaystyle \quad x^{2} - 2 x + \frac{121 y^{2}}{21} - \frac{726 y}{35} + \frac{519}{35} = 0\)
\(\displaystyle \quad x^{2} - 2 x + \frac{121 y^{2}}{21} + \frac{242 y}{15} + \frac{2297}{240} = 0\)
\(\displaystyle \quad x^{2} - 2 x + \frac{121 y^{2}}{21} - \frac{2662 y}{105} + \frac{48023}{1680} = 0\)
\(\displaystyle \quad x^{2} + 2 x + \frac{121 y^{2}}{21} + \frac{242 y}{35} + \frac{261}{140} = 0\)
\(\displaystyle \quad x^{2} - 4 x + \frac{121 y^{2}}{21} - \frac{1936 y}{105} + \frac{26927}{1680} = 0\)
\(\displaystyle \quad x^{2} + 2 x + \frac{121 y^{2}}{21} + \frac{484 y}{105} - \frac{269}{336} = 0\)
\(\displaystyle \quad x^{2} - 4 x + \frac{121 y^{2}}{21} + \frac{484 y}{105} + \frac{739}{336} = 0\)
\(\displaystyle \quad x^{2} + 2 x + \frac{121 y^{2}}{21} - \frac{242 y}{15} + \frac{133}{12} = 0\)
\(\displaystyle \quad x^{2} + 4 x + \frac{121 y^{2}}{21} + \frac{484 y}{105} + \frac{739}{336} = 0\)
\(\displaystyle \quad x^{2} + 4 x + \frac{121 y^{2}}{21} - \frac{3146 y}{105} + \frac{67583}{1680} = 0\)
\(\displaystyle \quad x^{2} - 4 x + \frac{121 y^{2}}{21} - \frac{2662 y}{105} + \frac{53063}{1680} = 0\)
\(\displaystyle \quad x^{2} - 4 x + \frac{121 y^{2}}{21} + \frac{242 y}{15} + \frac{3017}{240} = 0\)
\(\displaystyle \quad x^{2} + 4 x + \frac{121 y^{2}}{21} - \frac{726 y}{35} + \frac{624}{35} = 0\)
\(\displaystyle \quad x^{2} - 2 x + \frac{121 y^{2}}{21} - \frac{484 y}{35} + \frac{5037}{560} = 0\)
\(\displaystyle \quad x^{2} + 2 x + \frac{121 y^{2}}{21} + \frac{242 y}{105} - \frac{379}{105} = 0\)
\(\displaystyle \quad x^{2} + 4 x + \frac{121 y^{2}}{21} + \frac{968 y}{105} + \frac{12407}{1680} = 0\)
\(\displaystyle \quad x^{2} + 4 x + \frac{121 y^{2}}{21} - \frac{1936 y}{105} + \frac{26927}{1680} = 0\)
\(\displaystyle \quad x^{2} + 4 x + \frac{121 y^{2}}{21} + \frac{484 y}{35} + \frac{261}{35} = 0\)
\(\displaystyle \quad x^{2} + 2 x + \frac{121 y^{2}}{21} - \frac{484 y}{35} + \frac{5037}{560} = 0\)
\(\displaystyle \quad x^{2} + 2 x + \frac{121 y^{2}}{21} - \frac{484 y}{15} + \frac{124}{3} = 0\)
\(\displaystyle \quad x^{2} - 4 x + \frac{121 y^{2}}{21} - \frac{968 y}{35} + \frac{5037}{140} = 0\)
\(\displaystyle \quad x^{2} - 4 x + \frac{121 y^{2}}{21} + \frac{242 y}{35} + \frac{681}{140} = 0\)
\(\displaystyle \quad x^{2} - 4 x + \frac{121 y^{2}}{21} + \frac{484 y}{35} + \frac{261}{35} = 0\)
\(\displaystyle \quad x^{2} - 2 x + \frac{121 y^{2}}{21} + \frac{484 y}{105} - \frac{269}{336} = 0\)
\(\displaystyle \quad x^{2} - 2 x + \frac{121 y^{2}}{21} + \frac{242 y}{105} - \frac{379}{105} = 0\)
\(\displaystyle \quad x^{2} - 2 x + \frac{121 y^{2}}{21} - \frac{3146 y}{105} + \frac{62543}{1680} = 0\)
Vamos resolver o item \(1\). Os passos são os mesmos para todos os itens; só mudam os valores.
A equação é
\[x^{2} + 2 x + \frac{121 y^{2}}{21} + \frac{242 y}{15} + \frac{2297}{240} = 0\]
Vamos separar os termos em \(x\):
\[x^{2} + 2 x\]
Completando o quadrado, isto é igual a:
\[\left(x + 1\right)^{2} - 1\]
Vamos separar os termos em \(y\):
\[\frac{121 y^{2}}{21} + \frac{242 y}{15}\]
Completando o quadrado, isto é igual a:
\[\frac{121 \left(y + \frac{7}{5}\right)^{2}}{21} - \frac{847}{75}\]
Agora, somamos estas duas expressões (mais o termo independente da equação original).
O resultado é uma equação equivalente à original:
\[\left(x + 1\right)^{2} + \frac{121 \left(y + \frac{7}{5}\right)^{2}}{21} - \frac{1089}{400} = 0\]
Jogando o termo independente para o lado direito, e dividindo tudo para o lado direito ficar igual a \(1\), chegamos à forma canônica da equação da elipse:
\[\frac{\left(x + 1\right)^{2}}{\frac{1089}{400}} + \frac{\left(y + \frac{7}{5}\right)^{2}}{\frac{189}{400}} = 1\]
As respostas para todos os itens são:
\[ \begin{array}{r|l}\hline 1 & \displaystyle \frac{\left(x + 1\right)^{2}}{\frac{1089}{400}} + \frac{\left(y + \frac{7}{5}\right)^{2}}{\frac{189}{400}} = 1 \\ 2 & \displaystyle \frac{\left(x + 1\right)^{2}}{\frac{121}{400}} + \frac{\left(y + \frac{9}{5}\right)^{2}}{\frac{21}{400}} = 1 \\ 3 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{1089}{400}} + \frac{\left(y - \frac{13}{5}\right)^{2}}{\frac{189}{400}} = 1 \\ 4 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{121}{400}} + \frac{\left(y + \frac{4}{5}\right)^{2}}{\frac{21}{400}} = 1 \\ 5 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{121}{100}} + \frac{\left(y - \frac{7}{5}\right)^{2}}{\frac{21}{100}} = 1 \\ 6 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{121}{100}} + \frac{\left(y - \frac{7}{5}\right)^{2}}{\frac{21}{100}} = 1 \\ 7 & \displaystyle \frac{\left(x + 2\right)^{2}}{\frac{1089}{400}} + \frac{\left(y + \frac{7}{5}\right)^{2}}{\frac{189}{400}} = 1 \\ 8 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{121}{25}} + \frac{\left(y - \frac{14}{5}\right)^{2}}{\frac{21}{25}} = 1 \\ 9 & \displaystyle \frac{\left(x + 2\right)^{2}}{\frac{121}{400}} + \frac{\left(y - \frac{11}{5}\right)^{2}}{\frac{21}{400}} = 1 \\ 10 & \displaystyle \frac{\left(x + 1\right)^{2}}{\frac{1089}{400}} + \frac{\left(y - \frac{13}{5}\right)^{2}}{\frac{189}{400}} = 1 \\ 11 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{121}{25}} + \frac{\left(y - \frac{9}{5}\right)^{2}}{\frac{21}{25}} = 1 \\ 12 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{121}{400}} + \frac{\left(y + \frac{9}{5}\right)^{2}}{\frac{21}{400}} = 1 \\ 13 & \displaystyle \frac{\left(x + 2\right)^{2}}{\frac{121}{100}} + \frac{\left(y - \frac{7}{5}\right)^{2}}{\frac{21}{100}} = 1 \\ 14 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{1089}{400}} + \frac{\left(y - \frac{8}{5}\right)^{2}}{\frac{189}{400}} = 1 \\ 15 & \displaystyle \frac{\left(x + 1\right)^{2}}{\frac{1089}{400}} + \frac{\left(y - \frac{8}{5}\right)^{2}}{\frac{189}{400}} = 1 \\ 16 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{121}{100}} + \frac{\left(y + \frac{8}{5}\right)^{2}}{\frac{21}{100}} = 1 \\ 17 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{121}{25}} + \frac{\left(y - \frac{9}{5}\right)^{2}}{\frac{21}{25}} = 1 \\ 18 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{1089}{400}} + \frac{\left(y + \frac{7}{5}\right)^{2}}{\frac{189}{400}} = 1 \\ 19 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{121}{400}} + \frac{\left(y - \frac{11}{5}\right)^{2}}{\frac{21}{400}} = 1 \\ 20 & \displaystyle \frac{\left(x + 1\right)^{2}}{\frac{121}{100}} + \frac{\left(y + \frac{3}{5}\right)^{2}}{\frac{21}{100}} = 1 \\ 21 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{1089}{400}} + \frac{\left(y - \frac{8}{5}\right)^{2}}{\frac{189}{400}} = 1 \\ 22 & \displaystyle \frac{\left(x + 1\right)^{2}}{\frac{1089}{400}} + \frac{\left(y + \frac{2}{5}\right)^{2}}{\frac{189}{400}} = 1 \\ 23 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{1089}{400}} + \frac{\left(y + \frac{2}{5}\right)^{2}}{\frac{189}{400}} = 1 \\ 24 & \displaystyle \frac{\left(x + 1\right)^{2}}{\frac{121}{100}} + \frac{\left(y - \frac{7}{5}\right)^{2}}{\frac{21}{100}} = 1 \\ 25 & \displaystyle \frac{\left(x + 2\right)^{2}}{\frac{1089}{400}} + \frac{\left(y + \frac{2}{5}\right)^{2}}{\frac{189}{400}} = 1 \\ 26 & \displaystyle \frac{\left(x + 2\right)^{2}}{\frac{1089}{400}} + \frac{\left(y - \frac{13}{5}\right)^{2}}{\frac{189}{400}} = 1 \\ 27 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{121}{400}} + \frac{\left(y - \frac{11}{5}\right)^{2}}{\frac{21}{400}} = 1 \\ 28 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{1089}{400}} + \frac{\left(y + \frac{7}{5}\right)^{2}}{\frac{189}{400}} = 1 \\ 29 & \displaystyle \frac{\left(x + 2\right)^{2}}{\frac{121}{25}} + \frac{\left(y - \frac{9}{5}\right)^{2}}{\frac{21}{25}} = 1 \\ 30 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{121}{400}} + \frac{\left(y - \frac{6}{5}\right)^{2}}{\frac{21}{400}} = 1 \\ 31 & \displaystyle \frac{\left(x + 1\right)^{2}}{\frac{121}{25}} + \frac{\left(y + \frac{1}{5}\right)^{2}}{\frac{21}{25}} = 1 \\ 32 & \displaystyle \frac{\left(x + 2\right)^{2}}{\frac{121}{400}} + \frac{\left(y + \frac{4}{5}\right)^{2}}{\frac{21}{400}} = 1 \\ 33 & \displaystyle \frac{\left(x + 2\right)^{2}}{\frac{1089}{400}} + \frac{\left(y - \frac{8}{5}\right)^{2}}{\frac{189}{400}} = 1 \\ 34 & \displaystyle \frac{\left(x + 2\right)^{2}}{\frac{121}{25}} + \frac{\left(y + \frac{6}{5}\right)^{2}}{\frac{21}{25}} = 1 \\ 35 & \displaystyle \frac{\left(x + 1\right)^{2}}{\frac{121}{400}} + \frac{\left(y - \frac{6}{5}\right)^{2}}{\frac{21}{400}} = 1 \\ 36 & \displaystyle \frac{\left(x + 1\right)^{2}}{\frac{121}{25}} + \frac{\left(y - \frac{14}{5}\right)^{2}}{\frac{21}{25}} = 1 \\ 37 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{121}{100}} + \frac{\left(y - \frac{12}{5}\right)^{2}}{\frac{21}{100}} = 1 \\ 38 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{121}{100}} + \frac{\left(y + \frac{3}{5}\right)^{2}}{\frac{21}{100}} = 1 \\ 39 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{121}{25}} + \frac{\left(y + \frac{6}{5}\right)^{2}}{\frac{21}{25}} = 1 \\ 40 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{1089}{400}} + \frac{\left(y + \frac{2}{5}\right)^{2}}{\frac{189}{400}} = 1 \\ 41 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{121}{25}} + \frac{\left(y + \frac{1}{5}\right)^{2}}{\frac{21}{25}} = 1 \\ 42 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{1089}{400}} + \frac{\left(y - \frac{13}{5}\right)^{2}}{\frac{189}{400}} = 1 \\ \hline \end{array} \]
Para achar os focos, lembre-se de que, para uma elipse com eixo maior horizontal, com centro em \((h, k)\), os focos são
\[ \begin{align} F_1 &= (h - c, k) \\ F_2 &= (h + c, k) \end{align} \]
onde \(c\) é a distância focal, que pode ser calculada como
\[ c = \sqrt{a^2 - b^2} \]
Para o item \(1\)
\[ \begin{align} h &= -1 \\ k &= -7/5 \\ c &= \sqrt{1089/400 - 189/400} = 3/2 \end{align} \]
Os focos são
\[ \left( - \frac{5}{2}; \ - \frac{7}{5}\right)\quad\text{e}\quad\left( \frac{1}{2}; \ - \frac{7}{5}\right) \]
As respostas para todos os itens são:
\[ \begin{array}{r|ll}\hline 1 & \displaystyle \left( - \frac{5}{2}; \ - \frac{7}{5}\right) & \displaystyle \left( \frac{1}{2}; \ - \frac{7}{5}\right) \\ 2 & \displaystyle \left( - \frac{3}{2}; \ - \frac{9}{5}\right) & \displaystyle \left( - \frac{1}{2}; \ - \frac{9}{5}\right) \\ 3 & \displaystyle \left( \frac{1}{2}; \ \frac{13}{5}\right) & \displaystyle \left( \frac{7}{2}; \ \frac{13}{5}\right) \\ 4 & \displaystyle \left( \frac{1}{2}; \ - \frac{4}{5}\right) & \displaystyle \left( \frac{3}{2}; \ - \frac{4}{5}\right) \\ 5 & \displaystyle \left( 1; \ \frac{7}{5}\right) & \displaystyle \left( 3; \ \frac{7}{5}\right) \\ 6 & \displaystyle \left( 0; \ \frac{7}{5}\right) & \displaystyle \left( 2; \ \frac{7}{5}\right) \\ 7 & \displaystyle \left( - \frac{7}{2}; \ - \frac{7}{5}\right) & \displaystyle \left( - \frac{1}{2}; \ - \frac{7}{5}\right) \\ 8 & \displaystyle \left( 0; \ \frac{14}{5}\right) & \displaystyle \left( 4; \ \frac{14}{5}\right) \\ 9 & \displaystyle \left( - \frac{5}{2}; \ \frac{11}{5}\right) & \displaystyle \left( - \frac{3}{2}; \ \frac{11}{5}\right) \\ 10 & \displaystyle \left( - \frac{5}{2}; \ \frac{13}{5}\right) & \displaystyle \left( \frac{1}{2}; \ \frac{13}{5}\right) \\ 11 & \displaystyle \left( 0; \ \frac{9}{5}\right) & \displaystyle \left( 4; \ \frac{9}{5}\right) \\ 12 & \displaystyle \left( \frac{3}{2}; \ - \frac{9}{5}\right) & \displaystyle \left( \frac{5}{2}; \ - \frac{9}{5}\right) \\ 13 & \displaystyle \left( -3; \ \frac{7}{5}\right) & \displaystyle \left( -1; \ \frac{7}{5}\right) \\ 14 & \displaystyle \left( - \frac{1}{2}; \ \frac{8}{5}\right) & \displaystyle \left( \frac{5}{2}; \ \frac{8}{5}\right) \\ 15 & \displaystyle \left( - \frac{5}{2}; \ \frac{8}{5}\right) & \displaystyle \left( \frac{1}{2}; \ \frac{8}{5}\right) \\ 16 & \displaystyle \left( 0; \ - \frac{8}{5}\right) & \displaystyle \left( 2; \ - \frac{8}{5}\right) \\ 17 & \displaystyle \left( -1; \ \frac{9}{5}\right) & \displaystyle \left( 3; \ \frac{9}{5}\right) \\ 18 & \displaystyle \left( - \frac{1}{2}; \ - \frac{7}{5}\right) & \displaystyle \left( \frac{5}{2}; \ - \frac{7}{5}\right) \\ 19 & \displaystyle \left( \frac{1}{2}; \ \frac{11}{5}\right) & \displaystyle \left( \frac{3}{2}; \ \frac{11}{5}\right) \\ 20 & \displaystyle \left( -2; \ - \frac{3}{5}\right) & \displaystyle \left( 0; \ - \frac{3}{5}\right) \\ 21 & \displaystyle \left( \frac{1}{2}; \ \frac{8}{5}\right) & \displaystyle \left( \frac{7}{2}; \ \frac{8}{5}\right) \\ 22 & \displaystyle \left( - \frac{5}{2}; \ - \frac{2}{5}\right) & \displaystyle \left( \frac{1}{2}; \ - \frac{2}{5}\right) \\ 23 & \displaystyle \left( \frac{1}{2}; \ - \frac{2}{5}\right) & \displaystyle \left( \frac{7}{2}; \ - \frac{2}{5}\right) \\ 24 & \displaystyle \left( -2; \ \frac{7}{5}\right) & \displaystyle \left( 0; \ \frac{7}{5}\right) \\ 25 & \displaystyle \left( - \frac{7}{2}; \ - \frac{2}{5}\right) & \displaystyle \left( - \frac{1}{2}; \ - \frac{2}{5}\right) \\ 26 & \displaystyle \left( - \frac{7}{2}; \ \frac{13}{5}\right) & \displaystyle \left( - \frac{1}{2}; \ \frac{13}{5}\right) \\ 27 & \displaystyle \left( \frac{3}{2}; \ \frac{11}{5}\right) & \displaystyle \left( \frac{5}{2}; \ \frac{11}{5}\right) \\ 28 & \displaystyle \left( \frac{1}{2}; \ - \frac{7}{5}\right) & \displaystyle \left( \frac{7}{2}; \ - \frac{7}{5}\right) \\ 29 & \displaystyle \left( -4; \ \frac{9}{5}\right) & \displaystyle \left( 0; \ \frac{9}{5}\right) \\ 30 & \displaystyle \left( \frac{1}{2}; \ \frac{6}{5}\right) & \displaystyle \left( \frac{3}{2}; \ \frac{6}{5}\right) \\ 31 & \displaystyle \left( -3; \ - \frac{1}{5}\right) & \displaystyle \left( 1; \ - \frac{1}{5}\right) \\ 32 & \displaystyle \left( - \frac{5}{2}; \ - \frac{4}{5}\right) & \displaystyle \left( - \frac{3}{2}; \ - \frac{4}{5}\right) \\ 33 & \displaystyle \left( - \frac{7}{2}; \ \frac{8}{5}\right) & \displaystyle \left( - \frac{1}{2}; \ \frac{8}{5}\right) \\ 34 & \displaystyle \left( -4; \ - \frac{6}{5}\right) & \displaystyle \left( 0; \ - \frac{6}{5}\right) \\ 35 & \displaystyle \left( - \frac{3}{2}; \ \frac{6}{5}\right) & \displaystyle \left( - \frac{1}{2}; \ \frac{6}{5}\right) \\ 36 & \displaystyle \left( -3; \ \frac{14}{5}\right) & \displaystyle \left( 1; \ \frac{14}{5}\right) \\ 37 & \displaystyle \left( 1; \ \frac{12}{5}\right) & \displaystyle \left( 3; \ \frac{12}{5}\right) \\ 38 & \displaystyle \left( 1; \ - \frac{3}{5}\right) & \displaystyle \left( 3; \ - \frac{3}{5}\right) \\ 39 & \displaystyle \left( 0; \ - \frac{6}{5}\right) & \displaystyle \left( 4; \ - \frac{6}{5}\right) \\ 40 & \displaystyle \left( - \frac{1}{2}; \ - \frac{2}{5}\right) & \displaystyle \left( \frac{5}{2}; \ - \frac{2}{5}\right) \\ 41 & \displaystyle \left( -1; \ - \frac{1}{5}\right) & \displaystyle \left( 3; \ - \frac{1}{5}\right) \\ 42 & \displaystyle \left( - \frac{1}{2}; \ \frac{13}{5}\right) & \displaystyle \left( \frac{5}{2}; \ \frac{13}{5}\right) \\ \hline \end{array} \]
Cada olho é uma elipse de eixo maior vertical com os valores de \(a\) e de \(c\) dados abaixo (veja o seu número \(n\) nesta lista).
Ache as equações gerais destas elipses.
\(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)
\(\displaystyle \quad a = \frac{1}{3}\ ,\quad c = \frac{1}{4}\)
\(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)
\(\displaystyle \quad a = \frac{1}{3}\ ,\quad c = \frac{1}{4}\)
\(\displaystyle \quad a = \frac{2}{3}\ ,\quad c = \frac{1}{2}\)
\(\displaystyle \quad a = \frac{2}{3}\ ,\quad c = \frac{1}{2}\)
\(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)
\(\displaystyle \quad a = \frac{4}{3}\ ,\quad c = 1\)
\(\displaystyle \quad a = \frac{1}{3}\ ,\quad c = \frac{1}{4}\)
\(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)
\(\displaystyle \quad a = \frac{4}{3}\ ,\quad c = 1\)
\(\displaystyle \quad a = \frac{1}{3}\ ,\quad c = \frac{1}{4}\)
\(\displaystyle \quad a = \frac{2}{3}\ ,\quad c = \frac{1}{2}\)
\(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)
\(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)
\(\displaystyle \quad a = \frac{2}{3}\ ,\quad c = \frac{1}{2}\)
\(\displaystyle \quad a = \frac{4}{3}\ ,\quad c = 1\)
\(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)
\(\displaystyle \quad a = \frac{1}{3}\ ,\quad c = \frac{1}{4}\)
\(\displaystyle \quad a = \frac{2}{3}\ ,\quad c = \frac{1}{2}\)
\(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)
\(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)
\(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)
\(\displaystyle \quad a = \frac{2}{3}\ ,\quad c = \frac{1}{2}\)
\(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)
\(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)
\(\displaystyle \quad a = \frac{1}{3}\ ,\quad c = \frac{1}{4}\)
\(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)
\(\displaystyle \quad a = \frac{4}{3}\ ,\quad c = 1\)
\(\displaystyle \quad a = \frac{1}{3}\ ,\quad c = \frac{1}{4}\)
\(\displaystyle \quad a = \frac{4}{3}\ ,\quad c = 1\)
\(\displaystyle \quad a = \frac{1}{3}\ ,\quad c = \frac{1}{4}\)
\(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)
\(\displaystyle \quad a = \frac{4}{3}\ ,\quad c = 1\)
\(\displaystyle \quad a = \frac{1}{3}\ ,\quad c = \frac{1}{4}\)
\(\displaystyle \quad a = \frac{4}{3}\ ,\quad c = 1\)
\(\displaystyle \quad a = \frac{2}{3}\ ,\quad c = \frac{1}{2}\)
\(\displaystyle \quad a = \frac{2}{3}\ ,\quad c = \frac{1}{2}\)
\(\displaystyle \quad a = \frac{4}{3}\ ,\quad c = 1\)
\(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)
\(\displaystyle \quad a = \frac{4}{3}\ ,\quad c = 1\)
\(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)
Vamos resolver o item \(1\). Os passos são os mesmos para todos os itens; só mudam os valores.
Temos, para cada olho:
O centro \((h, k)\), que é um dos focos da elipse do item anterior;
O valor de \(a\);
O valor de \(c\).
O mais prático é achar a equação canônica de cada olho, que é da forma
\[ \frac{(x - h)^2}{b^2} + \frac{(y - k)^2}{a^2} = 1 \]
onde \(b = \sqrt{a^2 - c^2}\).
Importante: como a elipse tem o eixo maior vertical, o denominador \(a^2\) aparece no termo em \(y\).
Uma vez achada a equação canônica, desenvolvemos os quadrados e a soma para achar a equação geral.
Para um olho:
Centro \((h, k) = \left( - \frac{5}{2}; \ - \frac{7}{5}\right)\)
\(a = 1\)
\(c = \frac{3}{4}\)
\(b = \frac{\sqrt{7}}{4}\)
Equação canônica \({}= \frac{\left(x + \frac{5}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y + \frac{7}{5}\right)^{2}}{1} = 1\)
Equação geral \({}= \frac{16 x^{2}}{7} + \frac{80 x}{7} + y^{2} + \frac{14 y}{5} + \frac{2668}{175} = 0\)
Para o outro olho:
Centro \((h, k) = \left( \frac{1}{2}; \ - \frac{7}{5}\right)\)
\(a = 1\)
\(c = \frac{3}{4}\)
\(b = \frac{\sqrt{7}}{4}\)
Equação canônica \({}= \frac{\left(x - \frac{1}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y + \frac{7}{5}\right)^{2}}{1} = 1\)
Equação geral \({}= \frac{16 x^{2}}{7} - \frac{16 x}{7} + y^{2} + \frac{14 y}{5} + \frac{268}{175} = 0\)
As respostas para todos os itens (equações canônicas e gerais do primeiro olho) são:
\[ \begin{array}{r|lll} \hline 1 & \displaystyle \frac{\left(x + \frac{5}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y + \frac{7}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} + \frac{80 x}{7} + y^{2} + \frac{14 y}{5} + \frac{2668}{175} = 0 \\ 2 & \displaystyle \frac{\left(x + \frac{3}{2}\right)^{2}}{\frac{7}{144}} + \frac{1}{\frac{1}{9}} \left(y + \frac{9}{5}\right)^{2} = 1 & \qquad & \displaystyle \frac{144 x^{2}}{7} + \frac{432 x}{7} + 9 y^{2} + \frac{162 y}{5} + \frac{13028}{175} = 0 \\ 3 & \displaystyle \frac{\left(x - \frac{1}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y - \frac{13}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} - \frac{16 x}{7} + y^{2} - \frac{26 y}{5} + \frac{1108}{175} = 0 \\ 4 & \displaystyle \frac{\left(x - \frac{1}{2}\right)^{2}}{\frac{7}{144}} + \frac{1}{\frac{1}{9}} \left(y + \frac{4}{5}\right)^{2} = 1 & \qquad & \displaystyle \frac{144 x^{2}}{7} - \frac{144 x}{7} + 9 y^{2} + \frac{72 y}{5} + \frac{1733}{175} = 0 \\ 5 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{7}{36}} + \frac{\left(y - \frac{7}{5}\right)^{2}}{\frac{4}{9}} = 1 & \qquad & \displaystyle \frac{36 x^{2}}{7} - \frac{72 x}{7} + \frac{9 y^{2}}{4} - \frac{63 y}{10} + \frac{5987}{700} = 0 \\ 6 & \displaystyle \frac{x^{2}}{\frac{7}{36}} + \frac{\left(y - \frac{7}{5}\right)^{2}}{\frac{4}{9}} = 1 & \qquad & \displaystyle \frac{36 x^{2}}{7} + \frac{9 y^{2}}{4} - \frac{63 y}{10} + \frac{341}{100} = 0 \\ 7 & \displaystyle \frac{\left(x + \frac{7}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y + \frac{7}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} + 16 x + y^{2} + \frac{14 y}{5} + \frac{724}{25} = 0 \\ 8 & \displaystyle \frac{x^{2}}{\frac{7}{9}} + \frac{\left(y - \frac{14}{5}\right)^{2}}{\frac{16}{9}} = 1 & \qquad & \displaystyle \frac{9 x^{2}}{7} + \frac{9 y^{2}}{16} - \frac{63 y}{20} + \frac{341}{100} = 0 \\ 9 & \displaystyle \frac{\left(x + \frac{5}{2}\right)^{2}}{\frac{7}{144}} + \frac{1}{\frac{1}{9}} \left(y - \frac{11}{5}\right)^{2} = 1 & \qquad & \displaystyle \frac{144 x^{2}}{7} + \frac{720 x}{7} + 9 y^{2} - \frac{198 y}{5} + \frac{29948}{175} = 0 \\ 10 & \displaystyle \frac{\left(x + \frac{5}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y - \frac{13}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} + \frac{80 x}{7} + y^{2} - \frac{26 y}{5} + \frac{3508}{175} = 0 \\ 11 & \displaystyle \frac{x^{2}}{\frac{7}{9}} + \frac{\left(y - \frac{9}{5}\right)^{2}}{\frac{16}{9}} = 1 & \qquad & \displaystyle \frac{9 x^{2}}{7} + \frac{9 y^{2}}{16} - \frac{81 y}{40} + \frac{329}{400} = 0 \\ 12 & \displaystyle \frac{\left(x - \frac{3}{2}\right)^{2}}{\frac{7}{144}} + \frac{1}{\frac{1}{9}} \left(y + \frac{9}{5}\right)^{2} = 1 & \qquad & \displaystyle \frac{144 x^{2}}{7} - \frac{432 x}{7} + 9 y^{2} + \frac{162 y}{5} + \frac{13028}{175} = 0 \\ 13 & \displaystyle \frac{\left(x + 3\right)^{2}}{\frac{7}{36}} + \frac{\left(y - \frac{7}{5}\right)^{2}}{\frac{4}{9}} = 1 & \qquad & \displaystyle \frac{36 x^{2}}{7} + \frac{216 x}{7} + \frac{9 y^{2}}{4} - \frac{63 y}{10} + \frac{34787}{700} = 0 \\ 14 & \displaystyle \frac{\left(x + \frac{1}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y - \frac{8}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} + \frac{16 x}{7} + y^{2} - \frac{16 y}{5} + \frac{373}{175} = 0 \\ 15 & \displaystyle \frac{\left(x + \frac{5}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y - \frac{8}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} + \frac{80 x}{7} + y^{2} - \frac{16 y}{5} + \frac{2773}{175} = 0 \\ 16 & \displaystyle \frac{x^{2}}{\frac{7}{36}} + \frac{\left(y + \frac{8}{5}\right)^{2}}{\frac{4}{9}} = 1 & \qquad & \displaystyle \frac{36 x^{2}}{7} + \frac{9 y^{2}}{4} + \frac{36 y}{5} + \frac{119}{25} = 0 \\ 17 & \displaystyle \frac{\left(x + 1\right)^{2}}{\frac{7}{9}} + \frac{\left(y - \frac{9}{5}\right)^{2}}{\frac{16}{9}} = 1 & \qquad & \displaystyle \frac{9 x^{2}}{7} + \frac{18 x}{7} + \frac{9 y^{2}}{16} - \frac{81 y}{40} + \frac{5903}{2800} = 0 \\ 18 & \displaystyle \frac{\left(x + \frac{1}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y + \frac{7}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} + \frac{16 x}{7} + y^{2} + \frac{14 y}{5} + \frac{268}{175} = 0 \\ 19 & \displaystyle \frac{\left(x - \frac{1}{2}\right)^{2}}{\frac{7}{144}} + \frac{1}{\frac{1}{9}} \left(y - \frac{11}{5}\right)^{2} = 1 & \qquad & \displaystyle \frac{144 x^{2}}{7} - \frac{144 x}{7} + 9 y^{2} - \frac{198 y}{5} + \frac{8348}{175} = 0 \\ 20 & \displaystyle \frac{\left(x + 2\right)^{2}}{\frac{7}{36}} + \frac{\left(y + \frac{3}{5}\right)^{2}}{\frac{4}{9}} = 1 & \qquad & \displaystyle \frac{36 x^{2}}{7} + \frac{144 x}{7} + \frac{9 y^{2}}{4} + \frac{27 y}{10} + \frac{14267}{700} = 0 \\ 21 & \displaystyle \frac{\left(x - \frac{1}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y - \frac{8}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} - \frac{16 x}{7} + y^{2} - \frac{16 y}{5} + \frac{373}{175} = 0 \\ 22 & \displaystyle \frac{\left(x + \frac{5}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y + \frac{2}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} + \frac{80 x}{7} + y^{2} + \frac{4 y}{5} + \frac{2353}{175} = 0 \\ 23 & \displaystyle \frac{\left(x - \frac{1}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y + \frac{2}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} - \frac{16 x}{7} + y^{2} + \frac{4 y}{5} - \frac{47}{175} = 0 \\ 24 & \displaystyle \frac{\left(x + 2\right)^{2}}{\frac{7}{36}} + \frac{\left(y - \frac{7}{5}\right)^{2}}{\frac{4}{9}} = 1 & \qquad & \displaystyle \frac{36 x^{2}}{7} + \frac{144 x}{7} + \frac{9 y^{2}}{4} - \frac{63 y}{10} + \frac{16787}{700} = 0 \\ 25 & \displaystyle \frac{\left(x + \frac{7}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y + \frac{2}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} + 16 x + y^{2} + \frac{4 y}{5} + \frac{679}{25} = 0 \\ 26 & \displaystyle \frac{\left(x + \frac{7}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y - \frac{13}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} + 16 x + y^{2} - \frac{26 y}{5} + \frac{844}{25} = 0 \\ 27 & \displaystyle \frac{\left(x - \frac{3}{2}\right)^{2}}{\frac{7}{144}} + \frac{1}{\frac{1}{9}} \left(y - \frac{11}{5}\right)^{2} = 1 & \qquad & \displaystyle \frac{144 x^{2}}{7} - \frac{432 x}{7} + 9 y^{2} - \frac{198 y}{5} + \frac{15548}{175} = 0 \\ 28 & \displaystyle \frac{\left(x - \frac{1}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y + \frac{7}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} - \frac{16 x}{7} + y^{2} + \frac{14 y}{5} + \frac{268}{175} = 0 \\ 29 & \displaystyle \frac{\left(x + 4\right)^{2}}{\frac{7}{9}} + \frac{\left(y - \frac{9}{5}\right)^{2}}{\frac{16}{9}} = 1 & \qquad & \displaystyle \frac{9 x^{2}}{7} + \frac{72 x}{7} + \frac{9 y^{2}}{16} - \frac{81 y}{40} + \frac{59903}{2800} = 0 \\ 30 & \displaystyle \frac{\left(x - \frac{1}{2}\right)^{2}}{\frac{7}{144}} + \frac{1}{\frac{1}{9}} \left(y - \frac{6}{5}\right)^{2} = 1 & \qquad & \displaystyle \frac{144 x^{2}}{7} - \frac{144 x}{7} + 9 y^{2} - \frac{108 y}{5} + \frac{2993}{175} = 0 \\ 31 & \displaystyle \frac{\left(x + 3\right)^{2}}{\frac{7}{9}} + \frac{\left(y + \frac{1}{5}\right)^{2}}{\frac{16}{9}} = 1 & \qquad & \displaystyle \frac{9 x^{2}}{7} + \frac{54 x}{7} + \frac{9 y^{2}}{16} + \frac{9 y}{40} + \frac{29663}{2800} = 0 \\ 32 & \displaystyle \frac{\left(x + \frac{5}{2}\right)^{2}}{\frac{7}{144}} + \frac{1}{\frac{1}{9}} \left(y + \frac{4}{5}\right)^{2} = 1 & \qquad & \displaystyle \frac{144 x^{2}}{7} + \frac{720 x}{7} + 9 y^{2} + \frac{72 y}{5} + \frac{23333}{175} = 0 \\ 33 & \displaystyle \frac{\left(x + \frac{7}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y - \frac{8}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} + 16 x + y^{2} - \frac{16 y}{5} + \frac{739}{25} = 0 \\ 34 & \displaystyle \frac{\left(x + 4\right)^{2}}{\frac{7}{9}} + \frac{\left(y + \frac{6}{5}\right)^{2}}{\frac{16}{9}} = 1 & \qquad & \displaystyle \frac{9 x^{2}}{7} + \frac{72 x}{7} + \frac{9 y^{2}}{16} + \frac{27 y}{20} + \frac{14267}{700} = 0 \\ 35 & \displaystyle \frac{\left(x + \frac{3}{2}\right)^{2}}{\frac{7}{144}} + \frac{1}{\frac{1}{9}} \left(y - \frac{6}{5}\right)^{2} = 1 & \qquad & \displaystyle \frac{144 x^{2}}{7} + \frac{432 x}{7} + 9 y^{2} - \frac{108 y}{5} + \frac{10193}{175} = 0 \\ 36 & \displaystyle \frac{\left(x + 3\right)^{2}}{\frac{7}{9}} + \frac{\left(y - \frac{14}{5}\right)^{2}}{\frac{16}{9}} = 1 & \qquad & \displaystyle \frac{9 x^{2}}{7} + \frac{54 x}{7} + \frac{9 y^{2}}{16} - \frac{63 y}{20} + \frac{10487}{700} = 0 \\ 37 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{7}{36}} + \frac{\left(y - \frac{12}{5}\right)^{2}}{\frac{4}{9}} = 1 & \qquad & \displaystyle \frac{36 x^{2}}{7} - \frac{72 x}{7} + \frac{9 y^{2}}{4} - \frac{54 y}{5} + \frac{2993}{175} = 0 \\ 38 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{7}{36}} + \frac{\left(y + \frac{3}{5}\right)^{2}}{\frac{4}{9}} = 1 & \qquad & \displaystyle \frac{36 x^{2}}{7} - \frac{72 x}{7} + \frac{9 y^{2}}{4} + \frac{27 y}{10} + \frac{3467}{700} = 0 \\ 39 & \displaystyle \frac{x^{2}}{\frac{7}{9}} + \frac{\left(y + \frac{6}{5}\right)^{2}}{\frac{16}{9}} = 1 & \qquad & \displaystyle \frac{9 x^{2}}{7} + \frac{9 y^{2}}{16} + \frac{27 y}{20} - \frac{19}{100} = 0 \\ 40 & \displaystyle \frac{\left(x + \frac{1}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y + \frac{2}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} + \frac{16 x}{7} + y^{2} + \frac{4 y}{5} - \frac{47}{175} = 0 \\ 41 & \displaystyle \frac{\left(x + 1\right)^{2}}{\frac{7}{9}} + \frac{\left(y + \frac{1}{5}\right)^{2}}{\frac{16}{9}} = 1 & \qquad & \displaystyle \frac{9 x^{2}}{7} + \frac{18 x}{7} + \frac{9 y^{2}}{16} + \frac{9 y}{40} + \frac{863}{2800} = 0 \\ 42 & \displaystyle \frac{\left(x + \frac{1}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y - \frac{13}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} + \frac{16 x}{7} + y^{2} - \frac{26 y}{5} + \frac{1108}{175} = 0 \\ \hline \end{array} \]
As respostas para todos os itens (equações canônicas e gerais do segundo olho) são:
\[ \begin{array}{r|lll} \hline 1 & \displaystyle \frac{\left(x - \frac{1}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y + \frac{7}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} - \frac{16 x}{7} + y^{2} + \frac{14 y}{5} + \frac{268}{175} = 0 \\ 2 & \displaystyle \frac{\left(x + \frac{1}{2}\right)^{2}}{\frac{7}{144}} + \frac{1}{\frac{1}{9}} \left(y + \frac{9}{5}\right)^{2} = 1 & \qquad & \displaystyle \frac{144 x^{2}}{7} + \frac{144 x}{7} + 9 y^{2} + \frac{162 y}{5} + \frac{5828}{175} = 0 \\ 3 & \displaystyle \frac{\left(x - \frac{7}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y - \frac{13}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} - 16 x + y^{2} - \frac{26 y}{5} + \frac{844}{25} = 0 \\ 4 & \displaystyle \frac{\left(x - \frac{3}{2}\right)^{2}}{\frac{7}{144}} + \frac{1}{\frac{1}{9}} \left(y + \frac{4}{5}\right)^{2} = 1 & \qquad & \displaystyle \frac{144 x^{2}}{7} - \frac{432 x}{7} + 9 y^{2} + \frac{72 y}{5} + \frac{8933}{175} = 0 \\ 5 & \displaystyle \frac{\left(x - 3\right)^{2}}{\frac{7}{36}} + \frac{\left(y - \frac{7}{5}\right)^{2}}{\frac{4}{9}} = 1 & \qquad & \displaystyle \frac{36 x^{2}}{7} - \frac{216 x}{7} + \frac{9 y^{2}}{4} - \frac{63 y}{10} + \frac{34787}{700} = 0 \\ 6 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{7}{36}} + \frac{\left(y - \frac{7}{5}\right)^{2}}{\frac{4}{9}} = 1 & \qquad & \displaystyle \frac{36 x^{2}}{7} - \frac{144 x}{7} + \frac{9 y^{2}}{4} - \frac{63 y}{10} + \frac{16787}{700} = 0 \\ 7 & \displaystyle \frac{\left(x + \frac{1}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y + \frac{7}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} + \frac{16 x}{7} + y^{2} + \frac{14 y}{5} + \frac{268}{175} = 0 \\ 8 & \displaystyle \frac{\left(x - 4\right)^{2}}{\frac{7}{9}} + \frac{\left(y - \frac{14}{5}\right)^{2}}{\frac{16}{9}} = 1 & \qquad & \displaystyle \frac{9 x^{2}}{7} - \frac{72 x}{7} + \frac{9 y^{2}}{16} - \frac{63 y}{20} + \frac{16787}{700} = 0 \\ 9 & \displaystyle \frac{\left(x + \frac{3}{2}\right)^{2}}{\frac{7}{144}} + \frac{1}{\frac{1}{9}} \left(y - \frac{11}{5}\right)^{2} = 1 & \qquad & \displaystyle \frac{144 x^{2}}{7} + \frac{432 x}{7} + 9 y^{2} - \frac{198 y}{5} + \frac{15548}{175} = 0 \\ 10 & \displaystyle \frac{\left(x - \frac{1}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y - \frac{13}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} - \frac{16 x}{7} + y^{2} - \frac{26 y}{5} + \frac{1108}{175} = 0 \\ 11 & \displaystyle \frac{\left(x - 4\right)^{2}}{\frac{7}{9}} + \frac{\left(y - \frac{9}{5}\right)^{2}}{\frac{16}{9}} = 1 & \qquad & \displaystyle \frac{9 x^{2}}{7} - \frac{72 x}{7} + \frac{9 y^{2}}{16} - \frac{81 y}{40} + \frac{59903}{2800} = 0 \\ 12 & \displaystyle \frac{\left(x - \frac{5}{2}\right)^{2}}{\frac{7}{144}} + \frac{1}{\frac{1}{9}} \left(y + \frac{9}{5}\right)^{2} = 1 & \qquad & \displaystyle \frac{144 x^{2}}{7} - \frac{720 x}{7} + 9 y^{2} + \frac{162 y}{5} + \frac{27428}{175} = 0 \\ 13 & \displaystyle \frac{\left(x + 1\right)^{2}}{\frac{7}{36}} + \frac{\left(y - \frac{7}{5}\right)^{2}}{\frac{4}{9}} = 1 & \qquad & \displaystyle \frac{36 x^{2}}{7} + \frac{72 x}{7} + \frac{9 y^{2}}{4} - \frac{63 y}{10} + \frac{5987}{700} = 0 \\ 14 & \displaystyle \frac{\left(x - \frac{5}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y - \frac{8}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} - \frac{80 x}{7} + y^{2} - \frac{16 y}{5} + \frac{2773}{175} = 0 \\ 15 & \displaystyle \frac{\left(x - \frac{1}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y - \frac{8}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} - \frac{16 x}{7} + y^{2} - \frac{16 y}{5} + \frac{373}{175} = 0 \\ 16 & \displaystyle \frac{\left(x - 2\right)^{2}}{\frac{7}{36}} + \frac{\left(y + \frac{8}{5}\right)^{2}}{\frac{4}{9}} = 1 & \qquad & \displaystyle \frac{36 x^{2}}{7} - \frac{144 x}{7} + \frac{9 y^{2}}{4} + \frac{36 y}{5} + \frac{4433}{175} = 0 \\ 17 & \displaystyle \frac{\left(x - 3\right)^{2}}{\frac{7}{9}} + \frac{\left(y - \frac{9}{5}\right)^{2}}{\frac{16}{9}} = 1 & \qquad & \displaystyle \frac{9 x^{2}}{7} - \frac{54 x}{7} + \frac{9 y^{2}}{16} - \frac{81 y}{40} + \frac{34703}{2800} = 0 \\ 18 & \displaystyle \frac{\left(x - \frac{5}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y + \frac{7}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} - \frac{80 x}{7} + y^{2} + \frac{14 y}{5} + \frac{2668}{175} = 0 \\ 19 & \displaystyle \frac{\left(x - \frac{3}{2}\right)^{2}}{\frac{7}{144}} + \frac{1}{\frac{1}{9}} \left(y - \frac{11}{5}\right)^{2} = 1 & \qquad & \displaystyle \frac{144 x^{2}}{7} - \frac{432 x}{7} + 9 y^{2} - \frac{198 y}{5} + \frac{15548}{175} = 0 \\ 20 & \displaystyle \frac{x^{2}}{\frac{7}{36}} + \frac{\left(y + \frac{3}{5}\right)^{2}}{\frac{4}{9}} = 1 & \qquad & \displaystyle \frac{36 x^{2}}{7} + \frac{9 y^{2}}{4} + \frac{27 y}{10} - \frac{19}{100} = 0 \\ 21 & \displaystyle \frac{\left(x - \frac{7}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y - \frac{8}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} - 16 x + y^{2} - \frac{16 y}{5} + \frac{739}{25} = 0 \\ 22 & \displaystyle \frac{\left(x - \frac{1}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y + \frac{2}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} - \frac{16 x}{7} + y^{2} + \frac{4 y}{5} - \frac{47}{175} = 0 \\ 23 & \displaystyle \frac{\left(x - \frac{7}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y + \frac{2}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} - 16 x + y^{2} + \frac{4 y}{5} + \frac{679}{25} = 0 \\ 24 & \displaystyle \frac{x^{2}}{\frac{7}{36}} + \frac{\left(y - \frac{7}{5}\right)^{2}}{\frac{4}{9}} = 1 & \qquad & \displaystyle \frac{36 x^{2}}{7} + \frac{9 y^{2}}{4} - \frac{63 y}{10} + \frac{341}{100} = 0 \\ 25 & \displaystyle \frac{\left(x + \frac{1}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y + \frac{2}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} + \frac{16 x}{7} + y^{2} + \frac{4 y}{5} - \frac{47}{175} = 0 \\ 26 & \displaystyle \frac{\left(x + \frac{1}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y - \frac{13}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} + \frac{16 x}{7} + y^{2} - \frac{26 y}{5} + \frac{1108}{175} = 0 \\ 27 & \displaystyle \frac{\left(x - \frac{5}{2}\right)^{2}}{\frac{7}{144}} + \frac{1}{\frac{1}{9}} \left(y - \frac{11}{5}\right)^{2} = 1 & \qquad & \displaystyle \frac{144 x^{2}}{7} - \frac{720 x}{7} + 9 y^{2} - \frac{198 y}{5} + \frac{29948}{175} = 0 \\ 28 & \displaystyle \frac{\left(x - \frac{7}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y + \frac{7}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} - 16 x + y^{2} + \frac{14 y}{5} + \frac{724}{25} = 0 \\ 29 & \displaystyle \frac{x^{2}}{\frac{7}{9}} + \frac{\left(y - \frac{9}{5}\right)^{2}}{\frac{16}{9}} = 1 & \qquad & \displaystyle \frac{9 x^{2}}{7} + \frac{9 y^{2}}{16} - \frac{81 y}{40} + \frac{329}{400} = 0 \\ 30 & \displaystyle \frac{\left(x - \frac{3}{2}\right)^{2}}{\frac{7}{144}} + \frac{1}{\frac{1}{9}} \left(y - \frac{6}{5}\right)^{2} = 1 & \qquad & \displaystyle \frac{144 x^{2}}{7} - \frac{432 x}{7} + 9 y^{2} - \frac{108 y}{5} + \frac{10193}{175} = 0 \\ 31 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{7}{9}} + \frac{\left(y + \frac{1}{5}\right)^{2}}{\frac{16}{9}} = 1 & \qquad & \displaystyle \frac{9 x^{2}}{7} - \frac{18 x}{7} + \frac{9 y^{2}}{16} + \frac{9 y}{40} + \frac{863}{2800} = 0 \\ 32 & \displaystyle \frac{\left(x + \frac{3}{2}\right)^{2}}{\frac{7}{144}} + \frac{1}{\frac{1}{9}} \left(y + \frac{4}{5}\right)^{2} = 1 & \qquad & \displaystyle \frac{144 x^{2}}{7} + \frac{432 x}{7} + 9 y^{2} + \frac{72 y}{5} + \frac{8933}{175} = 0 \\ 33 & \displaystyle \frac{\left(x + \frac{1}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y - \frac{8}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} + \frac{16 x}{7} + y^{2} - \frac{16 y}{5} + \frac{373}{175} = 0 \\ 34 & \displaystyle \frac{x^{2}}{\frac{7}{9}} + \frac{\left(y + \frac{6}{5}\right)^{2}}{\frac{16}{9}} = 1 & \qquad & \displaystyle \frac{9 x^{2}}{7} + \frac{9 y^{2}}{16} + \frac{27 y}{20} - \frac{19}{100} = 0 \\ 35 & \displaystyle \frac{\left(x + \frac{1}{2}\right)^{2}}{\frac{7}{144}} + \frac{1}{\frac{1}{9}} \left(y - \frac{6}{5}\right)^{2} = 1 & \qquad & \displaystyle \frac{144 x^{2}}{7} + \frac{144 x}{7} + 9 y^{2} - \frac{108 y}{5} + \frac{2993}{175} = 0 \\ 36 & \displaystyle \frac{\left(x - 1\right)^{2}}{\frac{7}{9}} + \frac{\left(y - \frac{14}{5}\right)^{2}}{\frac{16}{9}} = 1 & \qquad & \displaystyle \frac{9 x^{2}}{7} - \frac{18 x}{7} + \frac{9 y^{2}}{16} - \frac{63 y}{20} + \frac{3287}{700} = 0 \\ 37 & \displaystyle \frac{\left(x - 3\right)^{2}}{\frac{7}{36}} + \frac{\left(y - \frac{12}{5}\right)^{2}}{\frac{4}{9}} = 1 & \qquad & \displaystyle \frac{36 x^{2}}{7} - \frac{216 x}{7} + \frac{9 y^{2}}{4} - \frac{54 y}{5} + \frac{10193}{175} = 0 \\ 38 & \displaystyle \frac{\left(x - 3\right)^{2}}{\frac{7}{36}} + \frac{\left(y + \frac{3}{5}\right)^{2}}{\frac{4}{9}} = 1 & \qquad & \displaystyle \frac{36 x^{2}}{7} - \frac{216 x}{7} + \frac{9 y^{2}}{4} + \frac{27 y}{10} + \frac{32267}{700} = 0 \\ 39 & \displaystyle \frac{\left(x - 4\right)^{2}}{\frac{7}{9}} + \frac{\left(y + \frac{6}{5}\right)^{2}}{\frac{16}{9}} = 1 & \qquad & \displaystyle \frac{9 x^{2}}{7} - \frac{72 x}{7} + \frac{9 y^{2}}{16} + \frac{27 y}{20} + \frac{14267}{700} = 0 \\ 40 & \displaystyle \frac{\left(x - \frac{5}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y + \frac{2}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} - \frac{80 x}{7} + y^{2} + \frac{4 y}{5} + \frac{2353}{175} = 0 \\ 41 & \displaystyle \frac{\left(x - 3\right)^{2}}{\frac{7}{9}} + \frac{\left(y + \frac{1}{5}\right)^{2}}{\frac{16}{9}} = 1 & \qquad & \displaystyle \frac{9 x^{2}}{7} - \frac{54 x}{7} + \frac{9 y^{2}}{16} + \frac{9 y}{40} + \frac{29663}{2800} = 0 \\ 42 & \displaystyle \frac{\left(x - \frac{5}{2}\right)^{2}}{\frac{7}{16}} + \frac{\left(y - \frac{13}{5}\right)^{2}}{1} = 1 & \qquad & \displaystyle \frac{16 x^{2}}{7} - \frac{80 x}{7} + y^{2} - \frac{26 y}{5} + \frac{3508}{175} = 0 \\ \hline \end{array} \]
A parte superior da boca é uma parábola com concavidade para cima, com as coordenadas do foco \(F\) e a distância focal \(p\) dadas abaixo (veja o seu número \(n\) nesta lista).
Ache a equação canônica desta parábola.
\(\displaystyle \quad F = \left( -1; \ -3\right)\ ,\quad p = \frac{3}{4}\)
\(\displaystyle \quad F = \left( -1; \ - \frac{7}{3}\right)\ ,\quad p = \frac{1}{4}\)
\(\displaystyle \quad F = \left( 2; \ 1\right)\ ,\quad p = \frac{3}{4}\)
\(\displaystyle \quad F = \left( 1; \ - \frac{4}{3}\right)\ ,\quad p = \frac{1}{4}\)
\(\displaystyle \quad F = \left( 2; \ \frac{1}{3}\right)\ ,\quad p = \frac{1}{2}\)
\(\displaystyle \quad F = \left( 1; \ \frac{1}{3}\right)\ ,\quad p = \frac{1}{2}\)
\(\displaystyle \quad F = \left( -2; \ -3\right)\ ,\quad p = \frac{3}{4}\)
\(\displaystyle \quad F = \left( 2; \ \frac{2}{3}\right)\ ,\quad p = 1\)
\(\displaystyle \quad F = \left( -2; \ \frac{5}{3}\right)\ ,\quad p = \frac{1}{4}\)
\(\displaystyle \quad F = \left( -1; \ 1\right)\ ,\quad p = \frac{3}{4}\)
\(\displaystyle \quad F = \left( 2; \ - \frac{1}{3}\right)\ ,\quad p = 1\)
\(\displaystyle \quad F = \left( 2; \ - \frac{7}{3}\right)\ ,\quad p = \frac{1}{4}\)
\(\displaystyle \quad F = \left( -2; \ \frac{1}{3}\right)\ ,\quad p = \frac{1}{2}\)
\(\displaystyle \quad F = \left( 1; \ 0\right)\ ,\quad p = \frac{3}{4}\)
\(\displaystyle \quad F = \left( -1; \ 0\right)\ ,\quad p = \frac{3}{4}\)
\(\displaystyle \quad F = \left( 1; \ - \frac{8}{3}\right)\ ,\quad p = \frac{1}{2}\)
\(\displaystyle \quad F = \left( 1; \ - \frac{1}{3}\right)\ ,\quad p = 1\)
\(\displaystyle \quad F = \left( 1; \ -3\right)\ ,\quad p = \frac{3}{4}\)
\(\displaystyle \quad F = \left( 1; \ \frac{5}{3}\right)\ ,\quad p = \frac{1}{4}\)
\(\displaystyle \quad F = \left( -1; \ - \frac{5}{3}\right)\ ,\quad p = \frac{1}{2}\)
\(\displaystyle \quad F = \left( 2; \ 0\right)\ ,\quad p = \frac{3}{4}\)
\(\displaystyle \quad F = \left( -1; \ -2\right)\ ,\quad p = \frac{3}{4}\)
\(\displaystyle \quad F = \left( 2; \ -2\right)\ ,\quad p = \frac{3}{4}\)
\(\displaystyle \quad F = \left( -1; \ \frac{1}{3}\right)\ ,\quad p = \frac{1}{2}\)
\(\displaystyle \quad F = \left( -2; \ -2\right)\ ,\quad p = \frac{3}{4}\)
\(\displaystyle \quad F = \left( -2; \ 1\right)\ ,\quad p = \frac{3}{4}\)
\(\displaystyle \quad F = \left( 2; \ \frac{5}{3}\right)\ ,\quad p = \frac{1}{4}\)
\(\displaystyle \quad F = \left( 2; \ -3\right)\ ,\quad p = \frac{3}{4}\)
\(\displaystyle \quad F = \left( -2; \ - \frac{1}{3}\right)\ ,\quad p = 1\)
\(\displaystyle \quad F = \left( 1; \ \frac{2}{3}\right)\ ,\quad p = \frac{1}{4}\)
\(\displaystyle \quad F = \left( -1; \ - \frac{7}{3}\right)\ ,\quad p = 1\)
\(\displaystyle \quad F = \left( -2; \ - \frac{4}{3}\right)\ ,\quad p = \frac{1}{4}\)
\(\displaystyle \quad F = \left( -2; \ 0\right)\ ,\quad p = \frac{3}{4}\)
\(\displaystyle \quad F = \left( -2; \ - \frac{10}{3}\right)\ ,\quad p = 1\)
\(\displaystyle \quad F = \left( -1; \ \frac{2}{3}\right)\ ,\quad p = \frac{1}{4}\)
\(\displaystyle \quad F = \left( -1; \ \frac{2}{3}\right)\ ,\quad p = 1\)
\(\displaystyle \quad F = \left( 2; \ \frac{4}{3}\right)\ ,\quad p = \frac{1}{2}\)
\(\displaystyle \quad F = \left( 2; \ - \frac{5}{3}\right)\ ,\quad p = \frac{1}{2}\)
\(\displaystyle \quad F = \left( 2; \ - \frac{10}{3}\right)\ ,\quad p = 1\)
\(\displaystyle \quad F = \left( 1; \ -2\right)\ ,\quad p = \frac{3}{4}\)
\(\displaystyle \quad F = \left( 1; \ - \frac{7}{3}\right)\ ,\quad p = 1\)
\(\displaystyle \quad F = \left( 1; \ 1\right)\ ,\quad p = \frac{3}{4}\)
Vamos resolver o item 1. Os passos são os mesmos para todos os itens; só mudam os valores.
A equação canônica da parábola com eixo vertical é
\[ y - k = \frac{1}{4p}(x - h)^2 \]
onde
\((h, k)\) é o vértice;
\(p = 3/4\) é a distância focal, que foi dada.
As coordenadas do foco \(F = (-1, -3)\) foram dadas, e o vértice está exatamente a \(p = 3/4\) unidades de distância abaixo do foco.
Ou seja, \(h = -1\) e \(k = -3 - 3/4 = -15/4\).
A equação canônica fica
\[ y + \frac{15}{4} = \frac{1}{3}(x + 1)^2 \]
As respostas para todos os itens são:
\[ \begin{array}{r|l} \hline 1 & \displaystyle y + \frac{15}{4} = \frac{\left(x + 1\right)^{2}}{3} \\ 2 & \displaystyle y + \frac{31}{12} = \left(x + 1\right)^{2} \\ 3 & \displaystyle y - \frac{1}{4} = \frac{\left(x - 2\right)^{2}}{3} \\ 4 & \displaystyle y + \frac{19}{12} = \left(x - 1\right)^{2} \\ 5 & \displaystyle y + \frac{1}{6} = \frac{\left(x - 2\right)^{2}}{2} \\ 6 & \displaystyle y + \frac{1}{6} = \frac{\left(x - 1\right)^{2}}{2} \\ 7 & \displaystyle y + \frac{15}{4} = \frac{\left(x + 2\right)^{2}}{3} \\ 8 & \displaystyle y + \frac{1}{3} = \frac{\left(x - 2\right)^{2}}{4} \\ 9 & \displaystyle y - \frac{17}{12} = \left(x + 2\right)^{2} \\ 10 & \displaystyle y - \frac{1}{4} = \frac{\left(x + 1\right)^{2}}{3} \\ 11 & \displaystyle y + \frac{4}{3} = \frac{\left(x - 2\right)^{2}}{4} \\ 12 & \displaystyle y + \frac{31}{12} = \left(x - 2\right)^{2} \\ 13 & \displaystyle y + \frac{1}{6} = \frac{\left(x + 2\right)^{2}}{2} \\ 14 & \displaystyle y + \frac{3}{4} = \frac{\left(x - 1\right)^{2}}{3} \\ 15 & \displaystyle y + \frac{3}{4} = \frac{\left(x + 1\right)^{2}}{3} \\ 16 & \displaystyle y + \frac{19}{6} = \frac{\left(x - 1\right)^{2}}{2} \\ 17 & \displaystyle y + \frac{4}{3} = \frac{\left(x - 1\right)^{2}}{4} \\ 18 & \displaystyle y + \frac{15}{4} = \frac{\left(x - 1\right)^{2}}{3} \\ 19 & \displaystyle y - \frac{17}{12} = \left(x - 1\right)^{2} \\ 20 & \displaystyle y + \frac{13}{6} = \frac{\left(x + 1\right)^{2}}{2} \\ 21 & \displaystyle y + \frac{3}{4} = \frac{\left(x - 2\right)^{2}}{3} \\ 22 & \displaystyle y + \frac{11}{4} = \frac{\left(x + 1\right)^{2}}{3} \\ 23 & \displaystyle y + \frac{11}{4} = \frac{\left(x - 2\right)^{2}}{3} \\ 24 & \displaystyle y + \frac{1}{6} = \frac{\left(x + 1\right)^{2}}{2} \\ 25 & \displaystyle y + \frac{11}{4} = \frac{\left(x + 2\right)^{2}}{3} \\ 26 & \displaystyle y - \frac{1}{4} = \frac{\left(x + 2\right)^{2}}{3} \\ 27 & \displaystyle y - \frac{17}{12} = \left(x - 2\right)^{2} \\ 28 & \displaystyle y + \frac{15}{4} = \frac{\left(x - 2\right)^{2}}{3} \\ 29 & \displaystyle y + \frac{4}{3} = \frac{\left(x + 2\right)^{2}}{4} \\ 30 & \displaystyle y - \frac{5}{12} = \left(x - 1\right)^{2} \\ 31 & \displaystyle y + \frac{10}{3} = \frac{\left(x + 1\right)^{2}}{4} \\ 32 & \displaystyle y + \frac{19}{12} = \left(x + 2\right)^{2} \\ 33 & \displaystyle y + \frac{3}{4} = \frac{\left(x + 2\right)^{2}}{3} \\ 34 & \displaystyle y + \frac{13}{3} = \frac{\left(x + 2\right)^{2}}{4} \\ 35 & \displaystyle y - \frac{5}{12} = \left(x + 1\right)^{2} \\ 36 & \displaystyle y + \frac{1}{3} = \frac{\left(x + 1\right)^{2}}{4} \\ 37 & \displaystyle y - \frac{5}{6} = \frac{\left(x - 2\right)^{2}}{2} \\ 38 & \displaystyle y + \frac{13}{6} = \frac{\left(x - 2\right)^{2}}{2} \\ 39 & \displaystyle y + \frac{13}{3} = \frac{\left(x - 2\right)^{2}}{4} \\ 40 & \displaystyle y + \frac{11}{4} = \frac{\left(x - 1\right)^{2}}{3} \\ 41 & \displaystyle y + \frac{10}{3} = \frac{\left(x - 1\right)^{2}}{4} \\ 42 & \displaystyle y - \frac{1}{4} = \frac{\left(x - 1\right)^{2}}{3} \\ \hline \end{array} \]
A parte inferior da boca também é uma parábola, cuja equação geral é dada abaixo (veja o seu número \(n\) nesta lista).
Ache a equação canônica desta parábola.
\(\displaystyle \quad x^{2} + 2 x - \frac{27 y}{13} - \frac{217}{26} = 0\)
\(\displaystyle \quad x^{2} + 2 x - \frac{9 y}{13} - \frac{25}{26} = 0\)
\(\displaystyle \quad x^{2} - 4 x - \frac{27 y}{13} + \frac{77}{26} = 0\)
\(\displaystyle \quad x^{2} - 2 x - \frac{9 y}{13} - \frac{7}{26} = 0\)
\(\displaystyle \quad x^{2} - 4 x - \frac{18 y}{13} + \frac{40}{13} = 0\)
\(\displaystyle \quad x^{2} - 2 x - \frac{18 y}{13} + \frac{1}{13} = 0\)
\(\displaystyle \quad x^{2} + 4 x - \frac{27 y}{13} - \frac{139}{26} = 0\)
\(\displaystyle \quad x^{2} - 4 x - \frac{36 y}{13} + \frac{4}{13} = 0\)
\(\displaystyle \quad x^{2} + 4 x - \frac{9 y}{13} + \frac{125}{26} = 0\)
\(\displaystyle \quad x^{2} + 2 x - \frac{27 y}{13} - \frac{1}{26} = 0\)
\(\displaystyle \quad x^{2} - 4 x - \frac{36 y}{13} - \frac{32}{13} = 0\)
\(\displaystyle \quad x^{2} - 4 x - \frac{9 y}{13} + \frac{53}{26} = 0\)
\(\displaystyle \quad x^{2} + 4 x - \frac{18 y}{13} + \frac{40}{13} = 0\)
\(\displaystyle \quad x^{2} - 2 x - \frac{27 y}{13} - \frac{55}{26} = 0\)
\(\displaystyle \quad x^{2} + 2 x - \frac{27 y}{13} - \frac{55}{26} = 0\)
\(\displaystyle \quad x^{2} - 2 x - \frac{18 y}{13} - \frac{53}{13} = 0\)
\(\displaystyle \quad x^{2} - 2 x - \frac{36 y}{13} - \frac{71}{13} = 0\)
\(\displaystyle \quad x^{2} - 2 x - \frac{27 y}{13} - \frac{217}{26} = 0\)
\(\displaystyle \quad x^{2} - 2 x - \frac{9 y}{13} + \frac{47}{26} = 0\)
\(\displaystyle \quad x^{2} + 2 x - \frac{18 y}{13} - \frac{35}{13} = 0\)
\(\displaystyle \quad x^{2} - 4 x - \frac{27 y}{13} + \frac{23}{26} = 0\)
\(\displaystyle \quad x^{2} + 2 x - \frac{27 y}{13} - \frac{163}{26} = 0\)
\(\displaystyle \quad x^{2} - 4 x - \frac{27 y}{13} - \frac{85}{26} = 0\)
\(\displaystyle \quad x^{2} + 2 x - \frac{18 y}{13} + \frac{1}{13} = 0\)
\(\displaystyle \quad x^{2} + 4 x - \frac{27 y}{13} - \frac{85}{26} = 0\)
\(\displaystyle \quad x^{2} + 4 x - \frac{27 y}{13} + \frac{77}{26} = 0\)
\(\displaystyle \quad x^{2} - 4 x - \frac{9 y}{13} + \frac{125}{26} = 0\)
\(\displaystyle \quad x^{2} - 4 x - \frac{27 y}{13} - \frac{139}{26} = 0\)
\(\displaystyle \quad x^{2} + 4 x - \frac{36 y}{13} - \frac{32}{13} = 0\)
\(\displaystyle \quad x^{2} - 2 x - \frac{9 y}{13} + \frac{29}{26} = 0\)
\(\displaystyle \quad x^{2} + 2 x - \frac{36 y}{13} - 11 = 0\)
\(\displaystyle \quad x^{2} + 4 x - \frac{9 y}{13} + \frac{71}{26} = 0\)
\(\displaystyle \quad x^{2} + 4 x - \frac{27 y}{13} + \frac{23}{26} = 0\)
\(\displaystyle \quad x^{2} + 4 x - \frac{36 y}{13} - \frac{140}{13} = 0\)
\(\displaystyle \quad x^{2} + 2 x - \frac{9 y}{13} + \frac{29}{26} = 0\)
\(\displaystyle \quad x^{2} + 2 x - \frac{36 y}{13} - \frac{35}{13} = 0\)
\(\displaystyle \quad x^{2} - 4 x - \frac{18 y}{13} + \frac{58}{13} = 0\)
\(\displaystyle \quad x^{2} - 4 x - \frac{18 y}{13} + \frac{4}{13} = 0\)
\(\displaystyle \quad x^{2} - 4 x - \frac{36 y}{13} - \frac{140}{13} = 0\)
\(\displaystyle \quad x^{2} - 2 x - \frac{27 y}{13} - \frac{163}{26} = 0\)
\(\displaystyle \quad x^{2} - 2 x - \frac{36 y}{13} - 11 = 0\)
\(\displaystyle \quad x^{2} - 2 x - \frac{27 y}{13} - \frac{1}{26} = 0\)
Vamos resolver o item 1. Os passos são os mesmos para todos os itens; só mudam os valores.
A equação é
\[x^{2} + 2 x - \frac{27 y}{13} - \frac{217}{26} = 0\]
Vamos separar os termos em \(x\):
\[x^{2} + 2 x\]
Completando o quadrado, isto é igual a:
\[\left(x + 1\right)^{2} - 1\]
Agora, somamos esta expressão com o termo em \(y\) e o termo independente. O resultado é uma equação equivalente à original:
\[- \frac{27 y}{13} + \left(x + 1\right)^{2} - \frac{243}{26} = 0\]
Rearrumando, chegamos à forma canônica:
\[y + \frac{9}{2} = \frac{13 \left(x + 1\right)^{2}}{27}\]
As respostas para todos os itens são:
\[ \begin{array}{r|l} \hline 1 & \displaystyle y + \frac{9}{2} = \frac{13 \left(x + 1\right)^{2}}{27} \\ 2 & \displaystyle y + \frac{17}{6} = \frac{13 \left(x + 1\right)^{2}}{9} \\ 3 & \displaystyle y + \frac{1}{2} = \frac{13 \left(x - 2\right)^{2}}{27} \\ 4 & \displaystyle y + \frac{11}{6} = \frac{13 \left(x - 1\right)^{2}}{9} \\ 5 & \displaystyle y + \frac{2}{3} = \frac{13 \left(x - 2\right)^{2}}{18} \\ 6 & \displaystyle y + \frac{2}{3} = \frac{13 \left(x - 1\right)^{2}}{18} \\ 7 & \displaystyle y + \frac{9}{2} = \frac{13 \left(x + 2\right)^{2}}{27} \\ 8 & \displaystyle y + \frac{4}{3} = \frac{13 \left(x - 2\right)^{2}}{36} \\ 9 & \displaystyle y - \frac{7}{6} = \frac{13 \left(x + 2\right)^{2}}{9} \\ 10 & \displaystyle y + \frac{1}{2} = \frac{13 \left(x + 1\right)^{2}}{27} \\ 11 & \displaystyle y + \frac{7}{3} = \frac{13 \left(x - 2\right)^{2}}{36} \\ 12 & \displaystyle y + \frac{17}{6} = \frac{13 \left(x - 2\right)^{2}}{9} \\ 13 & \displaystyle y + \frac{2}{3} = \frac{13 \left(x + 2\right)^{2}}{18} \\ 14 & \displaystyle y + \frac{3}{2} = \frac{13 \left(x - 1\right)^{2}}{27} \\ 15 & \displaystyle y + \frac{3}{2} = \frac{13 \left(x + 1\right)^{2}}{27} \\ 16 & \displaystyle y + \frac{11}{3} = \frac{13 \left(x - 1\right)^{2}}{18} \\ 17 & \displaystyle y + \frac{7}{3} = \frac{13 \left(x - 1\right)^{2}}{36} \\ 18 & \displaystyle y + \frac{9}{2} = \frac{13 \left(x - 1\right)^{2}}{27} \\ 19 & \displaystyle y - \frac{7}{6} = \frac{13 \left(x - 1\right)^{2}}{9} \\ 20 & \displaystyle y + \frac{8}{3} = \frac{13 \left(x + 1\right)^{2}}{18} \\ 21 & \displaystyle y + \frac{3}{2} = \frac{13 \left(x - 2\right)^{2}}{27} \\ 22 & \displaystyle y + \frac{7}{2} = \frac{13 \left(x + 1\right)^{2}}{27} \\ 23 & \displaystyle y + \frac{7}{2} = \frac{13 \left(x - 2\right)^{2}}{27} \\ 24 & \displaystyle y + \frac{2}{3} = \frac{13 \left(x + 1\right)^{2}}{18} \\ 25 & \displaystyle y + \frac{7}{2} = \frac{13 \left(x + 2\right)^{2}}{27} \\ 26 & \displaystyle y + \frac{1}{2} = \frac{13 \left(x + 2\right)^{2}}{27} \\ 27 & \displaystyle y - \frac{7}{6} = \frac{13 \left(x - 2\right)^{2}}{9} \\ 28 & \displaystyle y + \frac{9}{2} = \frac{13 \left(x - 2\right)^{2}}{27} \\ 29 & \displaystyle y + \frac{7}{3} = \frac{13 \left(x + 2\right)^{2}}{36} \\ 30 & \displaystyle y - \frac{1}{6} = \frac{13 \left(x - 1\right)^{2}}{9} \\ 31 & \displaystyle y + \frac{13}{3} = \frac{13 \left(x + 1\right)^{2}}{36} \\ 32 & \displaystyle y + \frac{11}{6} = \frac{13 \left(x + 2\right)^{2}}{9} \\ 33 & \displaystyle y + \frac{3}{2} = \frac{13 \left(x + 2\right)^{2}}{27} \\ 34 & \displaystyle y + \frac{16}{3} = \frac{13 \left(x + 2\right)^{2}}{36} \\ 35 & \displaystyle y - \frac{1}{6} = \frac{13 \left(x + 1\right)^{2}}{9} \\ 36 & \displaystyle y + \frac{4}{3} = \frac{13 \left(x + 1\right)^{2}}{36} \\ 37 & \displaystyle y - \frac{1}{3} = \frac{13 \left(x - 2\right)^{2}}{18} \\ 38 & \displaystyle y + \frac{8}{3} = \frac{13 \left(x - 2\right)^{2}}{18} \\ 39 & \displaystyle y + \frac{16}{3} = \frac{13 \left(x - 2\right)^{2}}{36} \\ 40 & \displaystyle y + \frac{7}{2} = \frac{13 \left(x - 1\right)^{2}}{27} \\ 41 & \displaystyle y + \frac{13}{3} = \frac{13 \left(x - 1\right)^{2}}{36} \\ 42 & \displaystyle y + \frac{1}{2} = \frac{13 \left(x - 1\right)^{2}}{27} \\ \hline \end{array} \]
Vamos resolver o item 1. Os passos são os mesmos para todos os itens; só mudam os valores.
Os pontos no interior da boca são exatamente aqueles que estão, ao mesmo tempo, abaixo da parte superior e acima da parte inferior.
São os pontos \((x, y)\) que satisfazem o seguinte sistema de inequações:
\[ \begin{cases} y + \frac{15}{4} < \frac{\left(x + 1\right)^{2}}{3} \\ y + \frac{9}{2} > \frac{13 \left(x + 1\right)^{2}}{27} \end{cases} \]
As respostas para todos os itens são:
\[ \begin{array}{r|l} \hline 1 & \begin{cases} \displaystyle y + \frac{15}{4} < \frac{\left(x + 1\right)^{2}}{3} \\ \displaystyle y + \frac{9}{2} > \frac{13 \left(x + 1\right)^{2}}{27} \end{cases} \\ 2 & \begin{cases} \displaystyle y + \frac{31}{12} < \left(x + 1\right)^{2} \\ \displaystyle y + \frac{17}{6} > \frac{13 \left(x + 1\right)^{2}}{9} \end{cases} \\ 3 & \begin{cases} \displaystyle y - \frac{1}{4} < \frac{\left(x - 2\right)^{2}}{3} \\ \displaystyle y + \frac{1}{2} > \frac{13 \left(x - 2\right)^{2}}{27} \end{cases} \\ 4 & \begin{cases} \displaystyle y + \frac{19}{12} < \left(x - 1\right)^{2} \\ \displaystyle y + \frac{11}{6} > \frac{13 \left(x - 1\right)^{2}}{9} \end{cases} \\ 5 & \begin{cases} \displaystyle y + \frac{1}{6} < \frac{\left(x - 2\right)^{2}}{2} \\ \displaystyle y + \frac{2}{3} > \frac{13 \left(x - 2\right)^{2}}{18} \end{cases} \\ 6 & \begin{cases} \displaystyle y + \frac{1}{6} < \frac{\left(x - 1\right)^{2}}{2} \\ \displaystyle y + \frac{2}{3} > \frac{13 \left(x - 1\right)^{2}}{18} \end{cases} \\ 7 & \begin{cases} \displaystyle y + \frac{15}{4} < \frac{\left(x + 2\right)^{2}}{3} \\ \displaystyle y + \frac{9}{2} > \frac{13 \left(x + 2\right)^{2}}{27} \end{cases} \\ 8 & \begin{cases} \displaystyle y + \frac{1}{3} < \frac{\left(x - 2\right)^{2}}{4} \\ \displaystyle y + \frac{4}{3} > \frac{13 \left(x - 2\right)^{2}}{36} \end{cases} \\ 9 & \begin{cases} \displaystyle y - \frac{17}{12} < \left(x + 2\right)^{2} \\ \displaystyle y - \frac{7}{6} > \frac{13 \left(x + 2\right)^{2}}{9} \end{cases} \\ 10 & \begin{cases} \displaystyle y - \frac{1}{4} < \frac{\left(x + 1\right)^{2}}{3} \\ \displaystyle y + \frac{1}{2} > \frac{13 \left(x + 1\right)^{2}}{27} \end{cases} \\ 11 & \begin{cases} \displaystyle y + \frac{4}{3} < \frac{\left(x - 2\right)^{2}}{4} \\ \displaystyle y + \frac{7}{3} > \frac{13 \left(x - 2\right)^{2}}{36} \end{cases} \\ 12 & \begin{cases} \displaystyle y + \frac{31}{12} < \left(x - 2\right)^{2} \\ \displaystyle y + \frac{17}{6} > \frac{13 \left(x - 2\right)^{2}}{9} \end{cases} \\ 13 & \begin{cases} \displaystyle y + \frac{1}{6} < \frac{\left(x + 2\right)^{2}}{2} \\ \displaystyle y + \frac{2}{3} > \frac{13 \left(x + 2\right)^{2}}{18} \end{cases} \\ 14 & \begin{cases} \displaystyle y + \frac{3}{4} < \frac{\left(x - 1\right)^{2}}{3} \\ \displaystyle y + \frac{3}{2} > \frac{13 \left(x - 1\right)^{2}}{27} \end{cases} \\ 15 & \begin{cases} \displaystyle y + \frac{3}{4} < \frac{\left(x + 1\right)^{2}}{3} \\ \displaystyle y + \frac{3}{2} > \frac{13 \left(x + 1\right)^{2}}{27} \end{cases} \\ 16 & \begin{cases} \displaystyle y + \frac{19}{6} < \frac{\left(x - 1\right)^{2}}{2} \\ \displaystyle y + \frac{11}{3} > \frac{13 \left(x - 1\right)^{2}}{18} \end{cases} \\ 17 & \begin{cases} \displaystyle y + \frac{4}{3} < \frac{\left(x - 1\right)^{2}}{4} \\ \displaystyle y + \frac{7}{3} > \frac{13 \left(x - 1\right)^{2}}{36} \end{cases} \\ 18 & \begin{cases} \displaystyle y + \frac{15}{4} < \frac{\left(x - 1\right)^{2}}{3} \\ \displaystyle y + \frac{9}{2} > \frac{13 \left(x - 1\right)^{2}}{27} \end{cases} \\ 19 & \begin{cases} \displaystyle y - \frac{17}{12} < \left(x - 1\right)^{2} \\ \displaystyle y - \frac{7}{6} > \frac{13 \left(x - 1\right)^{2}}{9} \end{cases} \\ 20 & \begin{cases} \displaystyle y + \frac{13}{6} < \frac{\left(x + 1\right)^{2}}{2} \\ \displaystyle y + \frac{8}{3} > \frac{13 \left(x + 1\right)^{2}}{18} \end{cases} \\ 21 & \begin{cases} \displaystyle y + \frac{3}{4} < \frac{\left(x - 2\right)^{2}}{3} \\ \displaystyle y + \frac{3}{2} > \frac{13 \left(x - 2\right)^{2}}{27} \end{cases} \\ 22 & \begin{cases} \displaystyle y + \frac{11}{4} < \frac{\left(x + 1\right)^{2}}{3} \\ \displaystyle y + \frac{7}{2} > \frac{13 \left(x + 1\right)^{2}}{27} \end{cases} \\ 23 & \begin{cases} \displaystyle y + \frac{11}{4} < \frac{\left(x - 2\right)^{2}}{3} \\ \displaystyle y + \frac{7}{2} > \frac{13 \left(x - 2\right)^{2}}{27} \end{cases} \\ 24 & \begin{cases} \displaystyle y + \frac{1}{6} < \frac{\left(x + 1\right)^{2}}{2} \\ \displaystyle y + \frac{2}{3} > \frac{13 \left(x + 1\right)^{2}}{18} \end{cases} \\ 25 & \begin{cases} \displaystyle y + \frac{11}{4} < \frac{\left(x + 2\right)^{2}}{3} \\ \displaystyle y + \frac{7}{2} > \frac{13 \left(x + 2\right)^{2}}{27} \end{cases} \\ 26 & \begin{cases} \displaystyle y - \frac{1}{4} < \frac{\left(x + 2\right)^{2}}{3} \\ \displaystyle y + \frac{1}{2} > \frac{13 \left(x + 2\right)^{2}}{27} \end{cases} \\ 27 & \begin{cases} \displaystyle y - \frac{17}{12} < \left(x - 2\right)^{2} \\ \displaystyle y - \frac{7}{6} > \frac{13 \left(x - 2\right)^{2}}{9} \end{cases} \\ 28 & \begin{cases} \displaystyle y + \frac{15}{4} < \frac{\left(x - 2\right)^{2}}{3} \\ \displaystyle y + \frac{9}{2} > \frac{13 \left(x - 2\right)^{2}}{27} \end{cases} \\ 29 & \begin{cases} \displaystyle y + \frac{4}{3} < \frac{\left(x + 2\right)^{2}}{4} \\ \displaystyle y + \frac{7}{3} > \frac{13 \left(x + 2\right)^{2}}{36} \end{cases} \\ 30 & \begin{cases} \displaystyle y - \frac{5}{12} < \left(x - 1\right)^{2} \\ \displaystyle y - \frac{1}{6} > \frac{13 \left(x - 1\right)^{2}}{9} \end{cases} \\ 31 & \begin{cases} \displaystyle y + \frac{10}{3} < \frac{\left(x + 1\right)^{2}}{4} \\ \displaystyle y + \frac{13}{3} > \frac{13 \left(x + 1\right)^{2}}{36} \end{cases} \\ 32 & \begin{cases} \displaystyle y + \frac{19}{12} < \left(x + 2\right)^{2} \\ \displaystyle y + \frac{11}{6} > \frac{13 \left(x + 2\right)^{2}}{9} \end{cases} \\ 33 & \begin{cases} \displaystyle y + \frac{3}{4} < \frac{\left(x + 2\right)^{2}}{3} \\ \displaystyle y + \frac{3}{2} > \frac{13 \left(x + 2\right)^{2}}{27} \end{cases} \\ 34 & \begin{cases} \displaystyle y + \frac{13}{3} < \frac{\left(x + 2\right)^{2}}{4} \\ \displaystyle y + \frac{16}{3} > \frac{13 \left(x + 2\right)^{2}}{36} \end{cases} \\ 35 & \begin{cases} \displaystyle y - \frac{5}{12} < \left(x + 1\right)^{2} \\ \displaystyle y - \frac{1}{6} > \frac{13 \left(x + 1\right)^{2}}{9} \end{cases} \\ 36 & \begin{cases} \displaystyle y + \frac{1}{3} < \frac{\left(x + 1\right)^{2}}{4} \\ \displaystyle y + \frac{4}{3} > \frac{13 \left(x + 1\right)^{2}}{36} \end{cases} \\ 37 & \begin{cases} \displaystyle y - \frac{5}{6} < \frac{\left(x - 2\right)^{2}}{2} \\ \displaystyle y - \frac{1}{3} > \frac{13 \left(x - 2\right)^{2}}{18} \end{cases} \\ 38 & \begin{cases} \displaystyle y + \frac{13}{6} < \frac{\left(x - 2\right)^{2}}{2} \\ \displaystyle y + \frac{8}{3} > \frac{13 \left(x - 2\right)^{2}}{18} \end{cases} \\ 39 & \begin{cases} \displaystyle y + \frac{13}{3} < \frac{\left(x - 2\right)^{2}}{4} \\ \displaystyle y + \frac{16}{3} > \frac{13 \left(x - 2\right)^{2}}{36} \end{cases} \\ 40 & \begin{cases} \displaystyle y + \frac{11}{4} < \frac{\left(x - 1\right)^{2}}{3} \\ \displaystyle y + \frac{7}{2} > \frac{13 \left(x - 1\right)^{2}}{27} \end{cases} \\ 41 & \begin{cases} \displaystyle y + \frac{10}{3} < \frac{\left(x - 1\right)^{2}}{4} \\ \displaystyle y + \frac{13}{3} > \frac{13 \left(x - 1\right)^{2}}{36} \end{cases} \\ 42 & \begin{cases} \displaystyle y - \frac{1}{4} < \frac{\left(x - 1\right)^{2}}{3} \\ \displaystyle y + \frac{1}{2} > \frac{13 \left(x - 1\right)^{2}}{27} \end{cases} \\ \hline \end{array} \]
As orelhas são os ramos de uma hipérbole de eixo real horizontal, de excentricidade \(11/10\), cujos vértices são os dois pontos do círculo do rosto que têm a coordenada \(y\) igual ao valor abaixo (veja o seu número \(n\) nesta lista).
\(\displaystyle \quad y = -2\)
\(\displaystyle \quad y = -2\)
\(\displaystyle \quad y = 2\)
\(\displaystyle \quad y = -1\)
\(\displaystyle \quad y = 1\)
\(\displaystyle \quad y = 1\)
\(\displaystyle \quad y = -2\)
\(\displaystyle \quad y = 2\)
\(\displaystyle \quad y = 2\)
\(\displaystyle \quad y = 2\)
\(\displaystyle \quad y = 1\)
\(\displaystyle \quad y = -2\)
\(\displaystyle \quad y = 1\)
\(\displaystyle \quad y = 1\)
\(\displaystyle \quad y = 1\)
\(\displaystyle \quad y = -2\)
\(\displaystyle \quad y = 1\)
\(\displaystyle \quad y = -2\)
\(\displaystyle \quad y = 2\)
\(\displaystyle \quad y = -1\)
\(\displaystyle \quad y = 1\)
\(\displaystyle \quad y = -1\)
\(\displaystyle \quad y = -1\)
\(\displaystyle \quad y = 1\)
\(\displaystyle \quad y = -1\)
\(\displaystyle \quad y = 2\)
\(\displaystyle \quad y = 2\)
\(\displaystyle \quad y = -2\)
\(\displaystyle \quad y = 1\)
\(\displaystyle \quad y = 1\)
\(\displaystyle \quad y = -1\)
\(\displaystyle \quad y = -1\)
\(\displaystyle \quad y = 1\)
\(\displaystyle \quad y = -2\)
\(\displaystyle \quad y = 1\)
\(\displaystyle \quad y = 2\)
\(\displaystyle \quad y = 2\)
\(\displaystyle \quad y = -1\)
\(\displaystyle \quad y = -2\)
\(\displaystyle \quad y = -1\)
\(\displaystyle \quad y = -1\)
\(\displaystyle \quad y = 2\)
Ache a equação canônica desta hipérbole.
Vamos resolver o item 1. Os passos são os mesmos para todos os itens; só mudam os valores.
A equação canônica de uma hipérbole de eixo real horizontal tem a forma
\[ \frac{(x - h)^2}{a^2} - \frac{(y - k)^2}{b^2} = 1 \]
Aqui, o ponto \((h, k)\) é o centro, que não foi dado.
Mas, se você prestar atenção, vai notar que os vértices da hipérbole estão na mesma horizontal \((y = -2)\) que o centro do rosto.
Então, como as orelhas são simétricas em relação ao centro do rosto, o centro da hipérbole é igual ao centro do círculo do rosto: \((h, k) = (-1, -2)\).
A excentricidade de uma hipérbole é \(e = c/a\). O enunciado diz que \(e = 11/10\).
Daí, \(c/a = 11/10\), o que equivale a dizer que \(c = 11a/10\).
Na hipérbole, \(c^2 = a^2 + b^2\), o que equivale a dizer que \(b^2 = c^2 - a^2\).
Isto equivale a dizer que \(b^2 = \frac{121a^2}{100} - a^2 = \frac{21a^2}{100}\).
Levando em conta as informações acima, a hipérbole que procuramos é
\[ \frac{(x + 1)^2}{a^2} - \frac{(y + 2)^2}{21a^2 / 100} = 1 \]
Para descobrir o valor de \(a\), podemos usar o fato de que os vértices da hipérbole também pertencem ao círculo do rosto.
Ou seja, os pontos \((-4, -2)\) e \((2, -2)\) são os vértices da hipérbole.
Usando o segundo vértice, poderíamos substituir \(x\) por \(2\) e \(y\) por \(-2\) e resolver a equação para achar o valor de \(a\).
Mas nem precisamos fazer isto. O valor de \(a\) é justamente a distância entre o centro e o vértice da hipérbole, e acabamos de observar que esta distância é o raio do círculo do rosto: ou seja, \(a = 3\).
A equação da hipérbole, fica, então
\[ \frac{(x + 1)^2}{9} - \frac{(y + 2)^2}{189 / 100} = 1 \]
As respostas para todos os itens são:
\[ \begin{array}{r|l} \hline 1 & \displaystyle \frac{\left(x + 1\right)^{2}}{9} - \frac{\left(y + 2\right)^{2}}{\frac{189}{100}} = 1 \\ 2 & \displaystyle \frac{\left(x + 1\right)^{2}}{1} - \frac{\left(y + 2\right)^{2}}{\frac{21}{100}} = 1 \\ 3 & \displaystyle \frac{\left(x - 2\right)^{2}}{9} - \frac{\left(y - 2\right)^{2}}{\frac{189}{100}} = 1 \\ 4 & \displaystyle \frac{\left(x - 1\right)^{2}}{1} - \frac{\left(y + 1\right)^{2}}{\frac{21}{100}} = 1 \\ 5 & \displaystyle \frac{\left(x - 2\right)^{2}}{4} - \frac{\left(y - 1\right)^{2}}{\frac{21}{25}} = 1 \\ 6 & \displaystyle \frac{\left(x - 1\right)^{2}}{4} - \frac{\left(y - 1\right)^{2}}{\frac{21}{25}} = 1 \\ 7 & \displaystyle \frac{\left(x + 2\right)^{2}}{9} - \frac{\left(y + 2\right)^{2}}{\frac{189}{100}} = 1 \\ 8 & \displaystyle \frac{\left(x - 2\right)^{2}}{16} - \frac{\left(y - 2\right)^{2}}{\frac{84}{25}} = 1 \\ 9 & \displaystyle \frac{\left(x + 2\right)^{2}}{1} - \frac{\left(y - 2\right)^{2}}{\frac{21}{100}} = 1 \\ 10 & \displaystyle \frac{\left(x + 1\right)^{2}}{9} - \frac{\left(y - 2\right)^{2}}{\frac{189}{100}} = 1 \\ 11 & \displaystyle \frac{\left(x - 2\right)^{2}}{16} - \frac{\left(y - 1\right)^{2}}{\frac{84}{25}} = 1 \\ 12 & \displaystyle \frac{\left(x - 2\right)^{2}}{1} - \frac{\left(y + 2\right)^{2}}{\frac{21}{100}} = 1 \\ 13 & \displaystyle \frac{\left(x + 2\right)^{2}}{4} - \frac{\left(y - 1\right)^{2}}{\frac{21}{25}} = 1 \\ 14 & \displaystyle \frac{\left(x - 1\right)^{2}}{9} - \frac{\left(y - 1\right)^{2}}{\frac{189}{100}} = 1 \\ 15 & \displaystyle \frac{\left(x + 1\right)^{2}}{9} - \frac{\left(y - 1\right)^{2}}{\frac{189}{100}} = 1 \\ 16 & \displaystyle \frac{\left(x - 1\right)^{2}}{4} - \frac{\left(y + 2\right)^{2}}{\frac{21}{25}} = 1 \\ 17 & \displaystyle \frac{\left(x - 1\right)^{2}}{16} - \frac{\left(y - 1\right)^{2}}{\frac{84}{25}} = 1 \\ 18 & \displaystyle \frac{\left(x - 1\right)^{2}}{9} - \frac{\left(y + 2\right)^{2}}{\frac{189}{100}} = 1 \\ 19 & \displaystyle \frac{\left(x - 1\right)^{2}}{1} - \frac{\left(y - 2\right)^{2}}{\frac{21}{100}} = 1 \\ 20 & \displaystyle \frac{\left(x + 1\right)^{2}}{4} - \frac{\left(y + 1\right)^{2}}{\frac{21}{25}} = 1 \\ 21 & \displaystyle \frac{\left(x - 2\right)^{2}}{9} - \frac{\left(y - 1\right)^{2}}{\frac{189}{100}} = 1 \\ 22 & \displaystyle \frac{\left(x + 1\right)^{2}}{9} - \frac{\left(y + 1\right)^{2}}{\frac{189}{100}} = 1 \\ 23 & \displaystyle \frac{\left(x - 2\right)^{2}}{9} - \frac{\left(y + 1\right)^{2}}{\frac{189}{100}} = 1 \\ 24 & \displaystyle \frac{\left(x + 1\right)^{2}}{4} - \frac{\left(y - 1\right)^{2}}{\frac{21}{25}} = 1 \\ 25 & \displaystyle \frac{\left(x + 2\right)^{2}}{9} - \frac{\left(y + 1\right)^{2}}{\frac{189}{100}} = 1 \\ 26 & \displaystyle \frac{\left(x + 2\right)^{2}}{9} - \frac{\left(y - 2\right)^{2}}{\frac{189}{100}} = 1 \\ 27 & \displaystyle \frac{\left(x - 2\right)^{2}}{1} - \frac{\left(y - 2\right)^{2}}{\frac{21}{100}} = 1 \\ 28 & \displaystyle \frac{\left(x - 2\right)^{2}}{9} - \frac{\left(y + 2\right)^{2}}{\frac{189}{100}} = 1 \\ 29 & \displaystyle \frac{\left(x + 2\right)^{2}}{16} - \frac{\left(y - 1\right)^{2}}{\frac{84}{25}} = 1 \\ 30 & \displaystyle \frac{\left(x - 1\right)^{2}}{1} - \frac{\left(y - 1\right)^{2}}{\frac{21}{100}} = 1 \\ 31 & \displaystyle \frac{\left(x + 1\right)^{2}}{16} - \frac{\left(y + 1\right)^{2}}{\frac{84}{25}} = 1 \\ 32 & \displaystyle \frac{\left(x + 2\right)^{2}}{1} - \frac{\left(y + 1\right)^{2}}{\frac{21}{100}} = 1 \\ 33 & \displaystyle \frac{\left(x + 2\right)^{2}}{9} - \frac{\left(y - 1\right)^{2}}{\frac{189}{100}} = 1 \\ 34 & \displaystyle \frac{\left(x + 2\right)^{2}}{16} - \frac{\left(y + 2\right)^{2}}{\frac{84}{25}} = 1 \\ 35 & \displaystyle \frac{\left(x + 1\right)^{2}}{1} - \frac{\left(y - 1\right)^{2}}{\frac{21}{100}} = 1 \\ 36 & \displaystyle \frac{\left(x + 1\right)^{2}}{16} - \frac{\left(y - 2\right)^{2}}{\frac{84}{25}} = 1 \\ 37 & \displaystyle \frac{\left(x - 2\right)^{2}}{4} - \frac{\left(y - 2\right)^{2}}{\frac{21}{25}} = 1 \\ 38 & \displaystyle \frac{\left(x - 2\right)^{2}}{4} - \frac{\left(y + 1\right)^{2}}{\frac{21}{25}} = 1 \\ 39 & \displaystyle \frac{\left(x - 2\right)^{2}}{16} - \frac{\left(y + 2\right)^{2}}{\frac{84}{25}} = 1 \\ 40 & \displaystyle \frac{\left(x - 1\right)^{2}}{9} - \frac{\left(y + 1\right)^{2}}{\frac{189}{100}} = 1 \\ 41 & \displaystyle \frac{\left(x - 1\right)^{2}}{16} - \frac{\left(y + 1\right)^{2}}{\frac{84}{25}} = 1 \\ 42 & \displaystyle \frac{\left(x - 1\right)^{2}}{9} - \frac{\left(y - 2\right)^{2}}{\frac{189}{100}} = 1 \\ \hline \end{array} \]
Escreva uma inequação que represente a região das orelhas que está preenchida em rosa na figura. A distância \(d\) entre o centro do rosto e a borda vertical de cada orelha é a dada abaixo (veja o seu número \(n\) nesta lista).
\(\displaystyle \quad d = \frac{27}{8}\)
\(\displaystyle \quad d = \frac{9}{8}\)
\(\displaystyle \quad d = \frac{27}{8}\)
\(\displaystyle \quad d = \frac{9}{8}\)
\(\displaystyle \quad d = \frac{9}{4}\)
\(\displaystyle \quad d = \frac{9}{4}\)
\(\displaystyle \quad d = \frac{27}{8}\)
\(\displaystyle \quad d = \frac{9}{2}\)
\(\displaystyle \quad d = \frac{9}{8}\)
\(\displaystyle \quad d = \frac{27}{8}\)
\(\displaystyle \quad d = \frac{9}{2}\)
\(\displaystyle \quad d = \frac{9}{8}\)
\(\displaystyle \quad d = \frac{9}{4}\)
\(\displaystyle \quad d = \frac{27}{8}\)
\(\displaystyle \quad d = \frac{27}{8}\)
\(\displaystyle \quad d = \frac{9}{4}\)
\(\displaystyle \quad d = \frac{9}{2}\)
\(\displaystyle \quad d = \frac{27}{8}\)
\(\displaystyle \quad d = \frac{9}{8}\)
\(\displaystyle \quad d = \frac{9}{4}\)
\(\displaystyle \quad d = \frac{27}{8}\)
\(\displaystyle \quad d = \frac{27}{8}\)
\(\displaystyle \quad d = \frac{27}{8}\)
\(\displaystyle \quad d = \frac{9}{4}\)
\(\displaystyle \quad d = \frac{27}{8}\)
\(\displaystyle \quad d = \frac{27}{8}\)
\(\displaystyle \quad d = \frac{9}{8}\)
\(\displaystyle \quad d = \frac{27}{8}\)
\(\displaystyle \quad d = \frac{9}{2}\)
\(\displaystyle \quad d = \frac{9}{8}\)
\(\displaystyle \quad d = \frac{9}{2}\)
\(\displaystyle \quad d = \frac{9}{8}\)
\(\displaystyle \quad d = \frac{27}{8}\)
\(\displaystyle \quad d = \frac{9}{2}\)
\(\displaystyle \quad d = \frac{9}{8}\)
\(\displaystyle \quad d = \frac{9}{2}\)
\(\displaystyle \quad d = \frac{9}{4}\)
\(\displaystyle \quad d = \frac{9}{4}\)
\(\displaystyle \quad d = \frac{9}{2}\)
\(\displaystyle \quad d = \frac{27}{8}\)
\(\displaystyle \quad d = \frac{9}{2}\)
\(\displaystyle \quad d = \frac{27}{8}\)
Vamos resolver o item 1. Os passos são os mesmos para todos os itens; só mudam os valores.
Lembrando que o centro do círculo tem \(x = -1\), os limites das orelhas são as duas retas verticais
\[x = -1 - 27/8 = -35/8\]
e
\[x = -1 + 27/8 = 19/8\]
O capítulo \(10\) do livro diz que os pontos que estão nas mesmas regiões que os focos da hipérbole (ou seja, nas orelhas) satisfazem a inequação
\[ \frac{(x + 1)^2}{9} - \frac{(y + 2)^2}{189 / 100} > 1 \]
Assim, a parte sombreada das orelhas corresponde aos pontos que satisfazem o sistema de inequações
\[ \begin{cases} \displaystyle \frac{(x + 1)^2}{9} - \frac{(y + 2)^2}{189 / 100} > 1 \\ \displaystyle x > \frac{-35}{8} \\ \displaystyle x < \frac{19}{8} \end{cases} \]
As respostas para todos os itens são:
\[ \begin{array}{r|l} \hline 1 & \begin{cases} \displaystyle \frac{\left(x + 1\right)^{2}}{9} - \frac{\left(y + 2\right)^{2}}{\frac{189}{100}} > 1 \\ \displaystyle x > - \frac{35}{8} \\ \displaystyle x < \frac{19}{8} \end{cases} \\ 2 & \begin{cases} \displaystyle \frac{\left(x + 1\right)^{2}}{1} - \frac{\left(y + 2\right)^{2}}{\frac{21}{100}} > 1 \\ \displaystyle x > - \frac{17}{8} \\ \displaystyle x < \frac{1}{8} \end{cases} \\ 3 & \begin{cases} \displaystyle \frac{\left(x - 2\right)^{2}}{9} - \frac{\left(y - 2\right)^{2}}{\frac{189}{100}} > 1 \\ \displaystyle x > - \frac{11}{8} \\ \displaystyle x < \frac{43}{8} \end{cases} \\ 4 & \begin{cases} \displaystyle \frac{\left(x - 1\right)^{2}}{1} - \frac{\left(y + 1\right)^{2}}{\frac{21}{100}} > 1 \\ \displaystyle x > - \frac{1}{8} \\ \displaystyle x < \frac{17}{8} \end{cases} \\ 5 & \begin{cases} \displaystyle \frac{\left(x - 2\right)^{2}}{4} - \frac{\left(y - 1\right)^{2}}{\frac{21}{25}} > 1 \\ \displaystyle x > - \frac{1}{4} \\ \displaystyle x < \frac{17}{4} \end{cases} \\ 6 & \begin{cases} \displaystyle \frac{\left(x - 1\right)^{2}}{4} - \frac{\left(y - 1\right)^{2}}{\frac{21}{25}} > 1 \\ \displaystyle x > - \frac{5}{4} \\ \displaystyle x < \frac{13}{4} \end{cases} \\ 7 & \begin{cases} \displaystyle \frac{\left(x + 2\right)^{2}}{9} - \frac{\left(y + 2\right)^{2}}{\frac{189}{100}} > 1 \\ \displaystyle x > - \frac{43}{8} \\ \displaystyle x < \frac{11}{8} \end{cases} \\ 8 & \begin{cases} \displaystyle \frac{\left(x - 2\right)^{2}}{16} - \frac{\left(y - 2\right)^{2}}{\frac{84}{25}} > 1 \\ \displaystyle x > - \frac{5}{2} \\ \displaystyle x < \frac{13}{2} \end{cases} \\ 9 & \begin{cases} \displaystyle \frac{\left(x + 2\right)^{2}}{1} - \frac{\left(y - 2\right)^{2}}{\frac{21}{100}} > 1 \\ \displaystyle x > - \frac{25}{8} \\ \displaystyle x < - \frac{7}{8} \end{cases} \\ 10 & \begin{cases} \displaystyle \frac{\left(x + 1\right)^{2}}{9} - \frac{\left(y - 2\right)^{2}}{\frac{189}{100}} > 1 \\ \displaystyle x > - \frac{35}{8} \\ \displaystyle x < \frac{19}{8} \end{cases} \\ 11 & \begin{cases} \displaystyle \frac{\left(x - 2\right)^{2}}{16} - \frac{\left(y - 1\right)^{2}}{\frac{84}{25}} > 1 \\ \displaystyle x > - \frac{5}{2} \\ \displaystyle x < \frac{13}{2} \end{cases} \\ 12 & \begin{cases} \displaystyle \frac{\left(x - 2\right)^{2}}{1} - \frac{\left(y + 2\right)^{2}}{\frac{21}{100}} > 1 \\ \displaystyle x > \frac{7}{8} \\ \displaystyle x < \frac{25}{8} \end{cases} \\ 13 & \begin{cases} \displaystyle \frac{\left(x + 2\right)^{2}}{4} - \frac{\left(y - 1\right)^{2}}{\frac{21}{25}} > 1 \\ \displaystyle x > - \frac{17}{4} \\ \displaystyle x < \frac{1}{4} \end{cases} \\ 14 & \begin{cases} \displaystyle \frac{\left(x - 1\right)^{2}}{9} - \frac{\left(y - 1\right)^{2}}{\frac{189}{100}} > 1 \\ \displaystyle x > - \frac{19}{8} \\ \displaystyle x < \frac{35}{8} \end{cases} \\ 15 & \begin{cases} \displaystyle \frac{\left(x + 1\right)^{2}}{9} - \frac{\left(y - 1\right)^{2}}{\frac{189}{100}} > 1 \\ \displaystyle x > - \frac{35}{8} \\ \displaystyle x < \frac{19}{8} \end{cases} \\ 16 & \begin{cases} \displaystyle \frac{\left(x - 1\right)^{2}}{4} - \frac{\left(y + 2\right)^{2}}{\frac{21}{25}} > 1 \\ \displaystyle x > - \frac{5}{4} \\ \displaystyle x < \frac{13}{4} \end{cases} \\ 17 & \begin{cases} \displaystyle \frac{\left(x - 1\right)^{2}}{16} - \frac{\left(y - 1\right)^{2}}{\frac{84}{25}} > 1 \\ \displaystyle x > - \frac{7}{2} \\ \displaystyle x < \frac{11}{2} \end{cases} \\ 18 & \begin{cases} \displaystyle \frac{\left(x - 1\right)^{2}}{9} - \frac{\left(y + 2\right)^{2}}{\frac{189}{100}} > 1 \\ \displaystyle x > - \frac{19}{8} \\ \displaystyle x < \frac{35}{8} \end{cases} \\ 19 & \begin{cases} \displaystyle \frac{\left(x - 1\right)^{2}}{1} - \frac{\left(y - 2\right)^{2}}{\frac{21}{100}} > 1 \\ \displaystyle x > - \frac{1}{8} \\ \displaystyle x < \frac{17}{8} \end{cases} \\ 20 & \begin{cases} \displaystyle \frac{\left(x + 1\right)^{2}}{4} - \frac{\left(y + 1\right)^{2}}{\frac{21}{25}} > 1 \\ \displaystyle x > - \frac{13}{4} \\ \displaystyle x < \frac{5}{4} \end{cases} \\ 21 & \begin{cases} \displaystyle \frac{\left(x - 2\right)^{2}}{9} - \frac{\left(y - 1\right)^{2}}{\frac{189}{100}} > 1 \\ \displaystyle x > - \frac{11}{8} \\ \displaystyle x < \frac{43}{8} \end{cases} \\ 22 & \begin{cases} \displaystyle \frac{\left(x + 1\right)^{2}}{9} - \frac{\left(y + 1\right)^{2}}{\frac{189}{100}} > 1 \\ \displaystyle x > - \frac{35}{8} \\ \displaystyle x < \frac{19}{8} \end{cases} \\ 23 & \begin{cases} \displaystyle \frac{\left(x - 2\right)^{2}}{9} - \frac{\left(y + 1\right)^{2}}{\frac{189}{100}} > 1 \\ \displaystyle x > - \frac{11}{8} \\ \displaystyle x < \frac{43}{8} \end{cases} \\ 24 & \begin{cases} \displaystyle \frac{\left(x + 1\right)^{2}}{4} - \frac{\left(y - 1\right)^{2}}{\frac{21}{25}} > 1 \\ \displaystyle x > - \frac{13}{4} \\ \displaystyle x < \frac{5}{4} \end{cases} \\ 25 & \begin{cases} \displaystyle \frac{\left(x + 2\right)^{2}}{9} - \frac{\left(y + 1\right)^{2}}{\frac{189}{100}} > 1 \\ \displaystyle x > - \frac{43}{8} \\ \displaystyle x < \frac{11}{8} \end{cases} \\ 26 & \begin{cases} \displaystyle \frac{\left(x + 2\right)^{2}}{9} - \frac{\left(y - 2\right)^{2}}{\frac{189}{100}} > 1 \\ \displaystyle x > - \frac{43}{8} \\ \displaystyle x < \frac{11}{8} \end{cases} \\ 27 & \begin{cases} \displaystyle \frac{\left(x - 2\right)^{2}}{1} - \frac{\left(y - 2\right)^{2}}{\frac{21}{100}} > 1 \\ \displaystyle x > \frac{7}{8} \\ \displaystyle x < \frac{25}{8} \end{cases} \\ 28 & \begin{cases} \displaystyle \frac{\left(x - 2\right)^{2}}{9} - \frac{\left(y + 2\right)^{2}}{\frac{189}{100}} > 1 \\ \displaystyle x > - \frac{11}{8} \\ \displaystyle x < \frac{43}{8} \end{cases} \\ 29 & \begin{cases} \displaystyle \frac{\left(x + 2\right)^{2}}{16} - \frac{\left(y - 1\right)^{2}}{\frac{84}{25}} > 1 \\ \displaystyle x > - \frac{13}{2} \\ \displaystyle x < \frac{5}{2} \end{cases} \\ 30 & \begin{cases} \displaystyle \frac{\left(x - 1\right)^{2}}{1} - \frac{\left(y - 1\right)^{2}}{\frac{21}{100}} > 1 \\ \displaystyle x > - \frac{1}{8} \\ \displaystyle x < \frac{17}{8} \end{cases} \\ 31 & \begin{cases} \displaystyle \frac{\left(x + 1\right)^{2}}{16} - \frac{\left(y + 1\right)^{2}}{\frac{84}{25}} > 1 \\ \displaystyle x > - \frac{11}{2} \\ \displaystyle x < \frac{7}{2} \end{cases} \\ 32 & \begin{cases} \displaystyle \frac{\left(x + 2\right)^{2}}{1} - \frac{\left(y + 1\right)^{2}}{\frac{21}{100}} > 1 \\ \displaystyle x > - \frac{25}{8} \\ \displaystyle x < - \frac{7}{8} \end{cases} \\ 33 & \begin{cases} \displaystyle \frac{\left(x + 2\right)^{2}}{9} - \frac{\left(y - 1\right)^{2}}{\frac{189}{100}} > 1 \\ \displaystyle x > - \frac{43}{8} \\ \displaystyle x < \frac{11}{8} \end{cases} \\ 34 & \begin{cases} \displaystyle \frac{\left(x + 2\right)^{2}}{16} - \frac{\left(y + 2\right)^{2}}{\frac{84}{25}} > 1 \\ \displaystyle x > - \frac{13}{2} \\ \displaystyle x < \frac{5}{2} \end{cases} \\ 35 & \begin{cases} \displaystyle \frac{\left(x + 1\right)^{2}}{1} - \frac{\left(y - 1\right)^{2}}{\frac{21}{100}} > 1 \\ \displaystyle x > - \frac{17}{8} \\ \displaystyle x < \frac{1}{8} \end{cases} \\ 36 & \begin{cases} \displaystyle \frac{\left(x + 1\right)^{2}}{16} - \frac{\left(y - 2\right)^{2}}{\frac{84}{25}} > 1 \\ \displaystyle x > - \frac{11}{2} \\ \displaystyle x < \frac{7}{2} \end{cases} \\ 37 & \begin{cases} \displaystyle \frac{\left(x - 2\right)^{2}}{4} - \frac{\left(y - 2\right)^{2}}{\frac{21}{25}} > 1 \\ \displaystyle x > - \frac{1}{4} \\ \displaystyle x < \frac{17}{4} \end{cases} \\ 38 & \begin{cases} \displaystyle \frac{\left(x - 2\right)^{2}}{4} - \frac{\left(y + 1\right)^{2}}{\frac{21}{25}} > 1 \\ \displaystyle x > - \frac{1}{4} \\ \displaystyle x < \frac{17}{4} \end{cases} \\ 39 & \begin{cases} \displaystyle \frac{\left(x - 2\right)^{2}}{16} - \frac{\left(y + 2\right)^{2}}{\frac{84}{25}} > 1 \\ \displaystyle x > - \frac{5}{2} \\ \displaystyle x < \frac{13}{2} \end{cases} \\ 40 & \begin{cases} \displaystyle \frac{\left(x - 1\right)^{2}}{9} - \frac{\left(y + 1\right)^{2}}{\frac{189}{100}} > 1 \\ \displaystyle x > - \frac{19}{8} \\ \displaystyle x < \frac{35}{8} \end{cases} \\ 41 & \begin{cases} \displaystyle \frac{\left(x - 1\right)^{2}}{16} - \frac{\left(y + 1\right)^{2}}{\frac{84}{25}} > 1 \\ \displaystyle x > - \frac{7}{2} \\ \displaystyle x < \frac{11}{2} \end{cases} \\ 42 & \begin{cases} \displaystyle \frac{\left(x - 1\right)^{2}}{9} - \frac{\left(y - 2\right)^{2}}{\frac{189}{100}} > 1 \\ \displaystyle x > - \frac{19}{8} \\ \displaystyle x < \frac{35}{8} \end{cases} \\ \hline \end{array} \]
matrícula | n |
---|---|
119060029 | 4 |
122060003 | 8 |
122060004 | 37 |
122060005 | 22 |
122060006 | 32 |
122060007 | 17 |
122060008 | 36 |
122060009 | 35 |
122060010 | 41 |
122060011 | 18 |
122060012 | 7 |
122060013 | 28 |
122060014 | 27 |
122060015 | 33 |
122060016 | 3 |
122060017 | 6 |
122060018 | 15 |
122060019 | 31 |
122060020 | 26 |
122060021 | 29 |
122060022 | 19 |
122060023 | 25 |
122060028 | 42 |
122060029 | 1 |
122060030 | 13 |
122060031 | 16 |
122060033 | 20 |
122060034 | 24 |
122060035 | 34 |
122060036 | 21 |
122060038 | 9 |
122060040 | 5 |
122060041 | 40 |
215060056 | 2 |
220060041 | 14 |
221060040 | 12 |
221060047 | 39 |
622060024 | 10 |
622060025 | 30 |
622060026 | 23 |
622060027 | 38 |
822060037 | 11 |