1 Instruções

2 Questão única: construindo um emoji com cônicas

Os dados da sua questão dependem do valor de \(n\) sorteado para você.

Veja o seu valor de \(n\) nesta lista.

Você vai achar equações de cônicas que são o rosto, os olhos, o nariz, a boca e as orelhas de um emoji no \(\mathbb{R}^2\).

Além disso, você vai achar inequações envolvendo cônicas que correspondem às áreas preenchidas da boca e das orelhas.

Em todos os seus cálculos e respostas, use frações e radicais.

Não use valores numéricos com vírgulas decimais em momento algum.

Seu emoji vai ficar assim:

2.1 Rosto

  • O rosto é o círculo de equação geral dada abaixo (veja o seu número \(n\) nesta lista).

  • Ache a equação canônica deste círculo.

    1. \(\displaystyle \quad x^{2} + 2 x + y^{2} + 4 y - 4 = 0\)

    2. \(\displaystyle \quad x^{2} + 2 x + y^{2} + 4 y + 4 = 0\)

    3. \(\displaystyle \quad x^{2} - 4 x + y^{2} - 4 y - 1 = 0\)

    4. \(\displaystyle \quad x^{2} - 2 x + y^{2} + 2 y + 1 = 0\)

    5. \(\displaystyle \quad x^{2} - 4 x + y^{2} - 2 y + 1 = 0\)

    6. \(\displaystyle \quad x^{2} - 2 x + y^{2} - 2 y - 2 = 0\)

    7. \(\displaystyle \quad x^{2} + 4 x + y^{2} + 4 y - 1 = 0\)

    8. \(\displaystyle \quad x^{2} - 4 x + y^{2} - 4 y - 8 = 0\)

    9. \(\displaystyle \quad x^{2} + 4 x + y^{2} - 4 y + 7 = 0\)

    10. \(\displaystyle \quad x^{2} + 2 x + y^{2} - 4 y - 4 = 0\)

    11. \(\displaystyle \quad x^{2} - 4 x + y^{2} - 2 y - 11 = 0\)

    12. \(\displaystyle \quad x^{2} - 4 x + y^{2} + 4 y + 7 = 0\)

    13. \(\displaystyle \quad x^{2} + 4 x + y^{2} - 2 y + 1 = 0\)

    14. \(\displaystyle \quad x^{2} - 2 x + y^{2} - 2 y - 7 = 0\)

    15. \(\displaystyle \quad x^{2} + 2 x + y^{2} - 2 y - 7 = 0\)

    16. \(\displaystyle \quad x^{2} - 2 x + y^{2} + 4 y + 1 = 0\)

    17. \(\displaystyle \quad x^{2} - 2 x + y^{2} - 2 y - 14 = 0\)

    18. \(\displaystyle \quad x^{2} - 2 x + y^{2} + 4 y - 4 = 0\)

    19. \(\displaystyle \quad x^{2} - 2 x + y^{2} - 4 y + 4 = 0\)

    20. \(\displaystyle \quad x^{2} + 2 x + y^{2} + 2 y - 2 = 0\)

    21. \(\displaystyle \quad x^{2} - 4 x + y^{2} - 2 y - 4 = 0\)

    22. \(\displaystyle \quad x^{2} + 2 x + y^{2} + 2 y - 7 = 0\)

    23. \(\displaystyle \quad x^{2} - 4 x + y^{2} + 2 y - 4 = 0\)

    24. \(\displaystyle \quad x^{2} + 2 x + y^{2} - 2 y - 2 = 0\)

    25. \(\displaystyle \quad x^{2} + 4 x + y^{2} + 2 y - 4 = 0\)

    26. \(\displaystyle \quad x^{2} + 4 x + y^{2} - 4 y - 1 = 0\)

    27. \(\displaystyle \quad x^{2} - 4 x + y^{2} - 4 y + 7 = 0\)

    28. \(\displaystyle \quad x^{2} - 4 x + y^{2} + 4 y - 1 = 0\)

    29. \(\displaystyle \quad x^{2} + 4 x + y^{2} - 2 y - 11 = 0\)

    30. \(\displaystyle \quad x^{2} - 2 x + y^{2} - 2 y + 1 = 0\)

    31. \(\displaystyle \quad x^{2} + 2 x + y^{2} + 2 y - 14 = 0\)

    32. \(\displaystyle \quad x^{2} + 4 x + y^{2} + 2 y + 4 = 0\)

    33. \(\displaystyle \quad x^{2} + 4 x + y^{2} - 2 y - 4 = 0\)

    34. \(\displaystyle \quad x^{2} + 4 x + y^{2} + 4 y - 8 = 0\)

    35. \(\displaystyle \quad x^{2} + 2 x + y^{2} - 2 y + 1 = 0\)

    36. \(\displaystyle \quad x^{2} + 2 x + y^{2} - 4 y - 11 = 0\)

    37. \(\displaystyle \quad x^{2} - 4 x + y^{2} - 4 y + 4 = 0\)

    38. \(\displaystyle \quad x^{2} - 4 x + y^{2} + 2 y + 1 = 0\)

    39. \(\displaystyle \quad x^{2} - 4 x + y^{2} + 4 y - 8 = 0\)

    40. \(\displaystyle \quad x^{2} - 2 x + y^{2} + 2 y - 7 = 0\)

    41. \(\displaystyle \quad x^{2} - 2 x + y^{2} + 2 y - 14 = 0\)

    42. \(\displaystyle \quad x^{2} - 2 x + y^{2} - 4 y - 4 = 0\)

2.2 Nariz

  • O nariz é a elipse de eixo maior horizontal com as coordenadas do centro, valores de \(a\) e de \(c\) dados abaixo (veja o seu número \(n\) nesta lista).

  • Ache a equação canônica desta elipse.

    1. \(\displaystyle \quad \text{Centro} = \left( -1; \ -2\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)

    2. \(\displaystyle \quad \text{Centro} = \left( -1; \ -2\right)\ ,\quad a = \frac{11}{100}\ ,\quad c = \frac{1}{10}\)

    3. \(\displaystyle \quad \text{Centro} = \left( 2; \ 2\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)

    4. \(\displaystyle \quad \text{Centro} = \left( 1; \ -1\right)\ ,\quad a = \frac{11}{100}\ ,\quad c = \frac{1}{10}\)

    5. \(\displaystyle \quad \text{Centro} = \left( 2; \ 1\right)\ ,\quad a = \frac{11}{50}\ ,\quad c = \frac{1}{5}\)

    6. \(\displaystyle \quad \text{Centro} = \left( 1; \ 1\right)\ ,\quad a = \frac{11}{50}\ ,\quad c = \frac{1}{5}\)

    7. \(\displaystyle \quad \text{Centro} = \left( -2; \ -2\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)

    8. \(\displaystyle \quad \text{Centro} = \left( 2; \ 2\right)\ ,\quad a = \frac{11}{25}\ ,\quad c = \frac{2}{5}\)

    9. \(\displaystyle \quad \text{Centro} = \left( -2; \ 2\right)\ ,\quad a = \frac{11}{100}\ ,\quad c = \frac{1}{10}\)

    10. \(\displaystyle \quad \text{Centro} = \left( -1; \ 2\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)

    11. \(\displaystyle \quad \text{Centro} = \left( 2; \ 1\right)\ ,\quad a = \frac{11}{25}\ ,\quad c = \frac{2}{5}\)

    12. \(\displaystyle \quad \text{Centro} = \left( 2; \ -2\right)\ ,\quad a = \frac{11}{100}\ ,\quad c = \frac{1}{10}\)

    13. \(\displaystyle \quad \text{Centro} = \left( -2; \ 1\right)\ ,\quad a = \frac{11}{50}\ ,\quad c = \frac{1}{5}\)

    14. \(\displaystyle \quad \text{Centro} = \left( 1; \ 1\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)

    15. \(\displaystyle \quad \text{Centro} = \left( -1; \ 1\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)

    16. \(\displaystyle \quad \text{Centro} = \left( 1; \ -2\right)\ ,\quad a = \frac{11}{50}\ ,\quad c = \frac{1}{5}\)

    17. \(\displaystyle \quad \text{Centro} = \left( 1; \ 1\right)\ ,\quad a = \frac{11}{25}\ ,\quad c = \frac{2}{5}\)

    18. \(\displaystyle \quad \text{Centro} = \left( 1; \ -2\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)

    19. \(\displaystyle \quad \text{Centro} = \left( 1; \ 2\right)\ ,\quad a = \frac{11}{100}\ ,\quad c = \frac{1}{10}\)

    20. \(\displaystyle \quad \text{Centro} = \left( -1; \ -1\right)\ ,\quad a = \frac{11}{50}\ ,\quad c = \frac{1}{5}\)

    21. \(\displaystyle \quad \text{Centro} = \left( 2; \ 1\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)

    22. \(\displaystyle \quad \text{Centro} = \left( -1; \ -1\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)

    23. \(\displaystyle \quad \text{Centro} = \left( 2; \ -1\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)

    24. \(\displaystyle \quad \text{Centro} = \left( -1; \ 1\right)\ ,\quad a = \frac{11}{50}\ ,\quad c = \frac{1}{5}\)

    25. \(\displaystyle \quad \text{Centro} = \left( -2; \ -1\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)

    26. \(\displaystyle \quad \text{Centro} = \left( -2; \ 2\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)

    27. \(\displaystyle \quad \text{Centro} = \left( 2; \ 2\right)\ ,\quad a = \frac{11}{100}\ ,\quad c = \frac{1}{10}\)

    28. \(\displaystyle \quad \text{Centro} = \left( 2; \ -2\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)

    29. \(\displaystyle \quad \text{Centro} = \left( -2; \ 1\right)\ ,\quad a = \frac{11}{25}\ ,\quad c = \frac{2}{5}\)

    30. \(\displaystyle \quad \text{Centro} = \left( 1; \ 1\right)\ ,\quad a = \frac{11}{100}\ ,\quad c = \frac{1}{10}\)

    31. \(\displaystyle \quad \text{Centro} = \left( -1; \ -1\right)\ ,\quad a = \frac{11}{25}\ ,\quad c = \frac{2}{5}\)

    32. \(\displaystyle \quad \text{Centro} = \left( -2; \ -1\right)\ ,\quad a = \frac{11}{100}\ ,\quad c = \frac{1}{10}\)

    33. \(\displaystyle \quad \text{Centro} = \left( -2; \ 1\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)

    34. \(\displaystyle \quad \text{Centro} = \left( -2; \ -2\right)\ ,\quad a = \frac{11}{25}\ ,\quad c = \frac{2}{5}\)

    35. \(\displaystyle \quad \text{Centro} = \left( -1; \ 1\right)\ ,\quad a = \frac{11}{100}\ ,\quad c = \frac{1}{10}\)

    36. \(\displaystyle \quad \text{Centro} = \left( -1; \ 2\right)\ ,\quad a = \frac{11}{25}\ ,\quad c = \frac{2}{5}\)

    37. \(\displaystyle \quad \text{Centro} = \left( 2; \ 2\right)\ ,\quad a = \frac{11}{50}\ ,\quad c = \frac{1}{5}\)

    38. \(\displaystyle \quad \text{Centro} = \left( 2; \ -1\right)\ ,\quad a = \frac{11}{50}\ ,\quad c = \frac{1}{5}\)

    39. \(\displaystyle \quad \text{Centro} = \left( 2; \ -2\right)\ ,\quad a = \frac{11}{25}\ ,\quad c = \frac{2}{5}\)

    40. \(\displaystyle \quad \text{Centro} = \left( 1; \ -1\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)

    41. \(\displaystyle \quad \text{Centro} = \left( 1; \ -1\right)\ ,\quad a = \frac{11}{25}\ ,\quad c = \frac{2}{5}\)

    42. \(\displaystyle \quad \text{Centro} = \left( 1; \ 2\right)\ ,\quad a = \frac{33}{100}\ ,\quad c = \frac{3}{10}\)

2.3 Olhos

  • Os centros dos olhos são os focos da elipse com equação geral dada abaixo (veja o seu número \(n\) nesta lista).

  • Ache a equação canônica e as coordenadas dos focos desta elipse.

    1. \(\displaystyle \quad x^{2} + 2 x + \frac{121 y^{2}}{21} + \frac{242 y}{15} + \frac{2297}{240} = 0\)

    2. \(\displaystyle \quad x^{2} + 2 x + \frac{121 y^{2}}{21} + \frac{726 y}{35} + \frac{2169}{112} = 0\)

    3. \(\displaystyle \quad x^{2} - 4 x + \frac{121 y^{2}}{21} - \frac{3146 y}{105} + \frac{67583}{1680} = 0\)

    4. \(\displaystyle \quad x^{2} - 2 x + \frac{121 y^{2}}{21} + \frac{968 y}{105} + \frac{7367}{1680} = 0\)

    5. \(\displaystyle \quad x^{2} - 4 x + \frac{121 y^{2}}{21} - \frac{242 y}{15} + \frac{169}{12} = 0\)

    6. \(\displaystyle \quad x^{2} - 2 x + \frac{121 y^{2}}{21} - \frac{242 y}{15} + \frac{133}{12} = 0\)

    7. \(\displaystyle \quad x^{2} + 4 x + \frac{121 y^{2}}{21} + \frac{242 y}{15} + \frac{3017}{240} = 0\)

    8. \(\displaystyle \quad x^{2} - 4 x + \frac{121 y^{2}}{21} - \frac{484 y}{15} + \frac{133}{3} = 0\)

    9. \(\displaystyle \quad x^{2} + 4 x + \frac{121 y^{2}}{21} - \frac{2662 y}{105} + \frac{53063}{1680} = 0\)

    10. \(\displaystyle \quad x^{2} + 2 x + \frac{121 y^{2}}{21} - \frac{3146 y}{105} + \frac{62543}{1680} = 0\)

    11. \(\displaystyle \quad x^{2} - 4 x + \frac{121 y^{2}}{21} - \frac{726 y}{35} + \frac{624}{35} = 0\)

    12. \(\displaystyle \quad x^{2} - 4 x + \frac{121 y^{2}}{21} + \frac{726 y}{35} + \frac{2505}{112} = 0\)

    13. \(\displaystyle \quad x^{2} + 4 x + \frac{121 y^{2}}{21} - \frac{242 y}{15} + \frac{169}{12} = 0\)

    14. \(\displaystyle \quad x^{2} - 2 x + \frac{121 y^{2}}{21} - \frac{1936 y}{105} + \frac{21887}{1680} = 0\)

    15. \(\displaystyle \quad x^{2} + 2 x + \frac{121 y^{2}}{21} - \frac{1936 y}{105} + \frac{21887}{1680} = 0\)

    16. \(\displaystyle \quad x^{2} - 2 x + \frac{121 y^{2}}{21} + \frac{1936 y}{105} + \frac{6107}{420} = 0\)

    17. \(\displaystyle \quad x^{2} - 2 x + \frac{121 y^{2}}{21} - \frac{726 y}{35} + \frac{519}{35} = 0\)

    18. \(\displaystyle \quad x^{2} - 2 x + \frac{121 y^{2}}{21} + \frac{242 y}{15} + \frac{2297}{240} = 0\)

    19. \(\displaystyle \quad x^{2} - 2 x + \frac{121 y^{2}}{21} - \frac{2662 y}{105} + \frac{48023}{1680} = 0\)

    20. \(\displaystyle \quad x^{2} + 2 x + \frac{121 y^{2}}{21} + \frac{242 y}{35} + \frac{261}{140} = 0\)

    21. \(\displaystyle \quad x^{2} - 4 x + \frac{121 y^{2}}{21} - \frac{1936 y}{105} + \frac{26927}{1680} = 0\)

    22. \(\displaystyle \quad x^{2} + 2 x + \frac{121 y^{2}}{21} + \frac{484 y}{105} - \frac{269}{336} = 0\)

    23. \(\displaystyle \quad x^{2} - 4 x + \frac{121 y^{2}}{21} + \frac{484 y}{105} + \frac{739}{336} = 0\)

    24. \(\displaystyle \quad x^{2} + 2 x + \frac{121 y^{2}}{21} - \frac{242 y}{15} + \frac{133}{12} = 0\)

    25. \(\displaystyle \quad x^{2} + 4 x + \frac{121 y^{2}}{21} + \frac{484 y}{105} + \frac{739}{336} = 0\)

    26. \(\displaystyle \quad x^{2} + 4 x + \frac{121 y^{2}}{21} - \frac{3146 y}{105} + \frac{67583}{1680} = 0\)

    27. \(\displaystyle \quad x^{2} - 4 x + \frac{121 y^{2}}{21} - \frac{2662 y}{105} + \frac{53063}{1680} = 0\)

    28. \(\displaystyle \quad x^{2} - 4 x + \frac{121 y^{2}}{21} + \frac{242 y}{15} + \frac{3017}{240} = 0\)

    29. \(\displaystyle \quad x^{2} + 4 x + \frac{121 y^{2}}{21} - \frac{726 y}{35} + \frac{624}{35} = 0\)

    30. \(\displaystyle \quad x^{2} - 2 x + \frac{121 y^{2}}{21} - \frac{484 y}{35} + \frac{5037}{560} = 0\)

    31. \(\displaystyle \quad x^{2} + 2 x + \frac{121 y^{2}}{21} + \frac{242 y}{105} - \frac{379}{105} = 0\)

    32. \(\displaystyle \quad x^{2} + 4 x + \frac{121 y^{2}}{21} + \frac{968 y}{105} + \frac{12407}{1680} = 0\)

    33. \(\displaystyle \quad x^{2} + 4 x + \frac{121 y^{2}}{21} - \frac{1936 y}{105} + \frac{26927}{1680} = 0\)

    34. \(\displaystyle \quad x^{2} + 4 x + \frac{121 y^{2}}{21} + \frac{484 y}{35} + \frac{261}{35} = 0\)

    35. \(\displaystyle \quad x^{2} + 2 x + \frac{121 y^{2}}{21} - \frac{484 y}{35} + \frac{5037}{560} = 0\)

    36. \(\displaystyle \quad x^{2} + 2 x + \frac{121 y^{2}}{21} - \frac{484 y}{15} + \frac{124}{3} = 0\)

    37. \(\displaystyle \quad x^{2} - 4 x + \frac{121 y^{2}}{21} - \frac{968 y}{35} + \frac{5037}{140} = 0\)

    38. \(\displaystyle \quad x^{2} - 4 x + \frac{121 y^{2}}{21} + \frac{242 y}{35} + \frac{681}{140} = 0\)

    39. \(\displaystyle \quad x^{2} - 4 x + \frac{121 y^{2}}{21} + \frac{484 y}{35} + \frac{261}{35} = 0\)

    40. \(\displaystyle \quad x^{2} - 2 x + \frac{121 y^{2}}{21} + \frac{484 y}{105} - \frac{269}{336} = 0\)

    41. \(\displaystyle \quad x^{2} - 2 x + \frac{121 y^{2}}{21} + \frac{242 y}{105} - \frac{379}{105} = 0\)

    42. \(\displaystyle \quad x^{2} - 2 x + \frac{121 y^{2}}{21} - \frac{3146 y}{105} + \frac{62543}{1680} = 0\)

  • Cada olho é uma elipse de eixo maior vertical com os valores de \(a\) e de \(c\) dados abaixo (veja o seu número \(n\) nesta lista).

  • Ache as equações gerais destas elipses.

    1. \(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)

    2. \(\displaystyle \quad a = \frac{1}{3}\ ,\quad c = \frac{1}{4}\)

    3. \(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)

    4. \(\displaystyle \quad a = \frac{1}{3}\ ,\quad c = \frac{1}{4}\)

    5. \(\displaystyle \quad a = \frac{2}{3}\ ,\quad c = \frac{1}{2}\)

    6. \(\displaystyle \quad a = \frac{2}{3}\ ,\quad c = \frac{1}{2}\)

    7. \(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)

    8. \(\displaystyle \quad a = \frac{4}{3}\ ,\quad c = 1\)

    9. \(\displaystyle \quad a = \frac{1}{3}\ ,\quad c = \frac{1}{4}\)

    10. \(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)

    11. \(\displaystyle \quad a = \frac{4}{3}\ ,\quad c = 1\)

    12. \(\displaystyle \quad a = \frac{1}{3}\ ,\quad c = \frac{1}{4}\)

    13. \(\displaystyle \quad a = \frac{2}{3}\ ,\quad c = \frac{1}{2}\)

    14. \(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)

    15. \(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)

    16. \(\displaystyle \quad a = \frac{2}{3}\ ,\quad c = \frac{1}{2}\)

    17. \(\displaystyle \quad a = \frac{4}{3}\ ,\quad c = 1\)

    18. \(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)

    19. \(\displaystyle \quad a = \frac{1}{3}\ ,\quad c = \frac{1}{4}\)

    20. \(\displaystyle \quad a = \frac{2}{3}\ ,\quad c = \frac{1}{2}\)

    21. \(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)

    22. \(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)

    23. \(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)

    24. \(\displaystyle \quad a = \frac{2}{3}\ ,\quad c = \frac{1}{2}\)

    25. \(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)

    26. \(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)

    27. \(\displaystyle \quad a = \frac{1}{3}\ ,\quad c = \frac{1}{4}\)

    28. \(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)

    29. \(\displaystyle \quad a = \frac{4}{3}\ ,\quad c = 1\)

    30. \(\displaystyle \quad a = \frac{1}{3}\ ,\quad c = \frac{1}{4}\)

    31. \(\displaystyle \quad a = \frac{4}{3}\ ,\quad c = 1\)

    32. \(\displaystyle \quad a = \frac{1}{3}\ ,\quad c = \frac{1}{4}\)

    33. \(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)

    34. \(\displaystyle \quad a = \frac{4}{3}\ ,\quad c = 1\)

    35. \(\displaystyle \quad a = \frac{1}{3}\ ,\quad c = \frac{1}{4}\)

    36. \(\displaystyle \quad a = \frac{4}{3}\ ,\quad c = 1\)

    37. \(\displaystyle \quad a = \frac{2}{3}\ ,\quad c = \frac{1}{2}\)

    38. \(\displaystyle \quad a = \frac{2}{3}\ ,\quad c = \frac{1}{2}\)

    39. \(\displaystyle \quad a = \frac{4}{3}\ ,\quad c = 1\)

    40. \(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)

    41. \(\displaystyle \quad a = \frac{4}{3}\ ,\quad c = 1\)

    42. \(\displaystyle \quad a = 1\ ,\quad c = \frac{3}{4}\)

2.4 Boca

  • A parte superior da boca é uma parábola com concavidade para cima, com as coordenadas do foco \(F\) e a distância focal \(p\) dadas abaixo (veja o seu número \(n\) nesta lista).

  • Ache a equação canônica desta parábola.

    1. \(\displaystyle \quad F = \left( -1; \ -3\right)\ ,\quad p = \frac{3}{4}\)

    2. \(\displaystyle \quad F = \left( -1; \ - \frac{7}{3}\right)\ ,\quad p = \frac{1}{4}\)

    3. \(\displaystyle \quad F = \left( 2; \ 1\right)\ ,\quad p = \frac{3}{4}\)

    4. \(\displaystyle \quad F = \left( 1; \ - \frac{4}{3}\right)\ ,\quad p = \frac{1}{4}\)

    5. \(\displaystyle \quad F = \left( 2; \ \frac{1}{3}\right)\ ,\quad p = \frac{1}{2}\)

    6. \(\displaystyle \quad F = \left( 1; \ \frac{1}{3}\right)\ ,\quad p = \frac{1}{2}\)

    7. \(\displaystyle \quad F = \left( -2; \ -3\right)\ ,\quad p = \frac{3}{4}\)

    8. \(\displaystyle \quad F = \left( 2; \ \frac{2}{3}\right)\ ,\quad p = 1\)

    9. \(\displaystyle \quad F = \left( -2; \ \frac{5}{3}\right)\ ,\quad p = \frac{1}{4}\)

    10. \(\displaystyle \quad F = \left( -1; \ 1\right)\ ,\quad p = \frac{3}{4}\)

    11. \(\displaystyle \quad F = \left( 2; \ - \frac{1}{3}\right)\ ,\quad p = 1\)

    12. \(\displaystyle \quad F = \left( 2; \ - \frac{7}{3}\right)\ ,\quad p = \frac{1}{4}\)

    13. \(\displaystyle \quad F = \left( -2; \ \frac{1}{3}\right)\ ,\quad p = \frac{1}{2}\)

    14. \(\displaystyle \quad F = \left( 1; \ 0\right)\ ,\quad p = \frac{3}{4}\)

    15. \(\displaystyle \quad F = \left( -1; \ 0\right)\ ,\quad p = \frac{3}{4}\)

    16. \(\displaystyle \quad F = \left( 1; \ - \frac{8}{3}\right)\ ,\quad p = \frac{1}{2}\)

    17. \(\displaystyle \quad F = \left( 1; \ - \frac{1}{3}\right)\ ,\quad p = 1\)

    18. \(\displaystyle \quad F = \left( 1; \ -3\right)\ ,\quad p = \frac{3}{4}\)

    19. \(\displaystyle \quad F = \left( 1; \ \frac{5}{3}\right)\ ,\quad p = \frac{1}{4}\)

    20. \(\displaystyle \quad F = \left( -1; \ - \frac{5}{3}\right)\ ,\quad p = \frac{1}{2}\)

    21. \(\displaystyle \quad F = \left( 2; \ 0\right)\ ,\quad p = \frac{3}{4}\)

    22. \(\displaystyle \quad F = \left( -1; \ -2\right)\ ,\quad p = \frac{3}{4}\)

    23. \(\displaystyle \quad F = \left( 2; \ -2\right)\ ,\quad p = \frac{3}{4}\)

    24. \(\displaystyle \quad F = \left( -1; \ \frac{1}{3}\right)\ ,\quad p = \frac{1}{2}\)

    25. \(\displaystyle \quad F = \left( -2; \ -2\right)\ ,\quad p = \frac{3}{4}\)

    26. \(\displaystyle \quad F = \left( -2; \ 1\right)\ ,\quad p = \frac{3}{4}\)

    27. \(\displaystyle \quad F = \left( 2; \ \frac{5}{3}\right)\ ,\quad p = \frac{1}{4}\)

    28. \(\displaystyle \quad F = \left( 2; \ -3\right)\ ,\quad p = \frac{3}{4}\)

    29. \(\displaystyle \quad F = \left( -2; \ - \frac{1}{3}\right)\ ,\quad p = 1\)

    30. \(\displaystyle \quad F = \left( 1; \ \frac{2}{3}\right)\ ,\quad p = \frac{1}{4}\)

    31. \(\displaystyle \quad F = \left( -1; \ - \frac{7}{3}\right)\ ,\quad p = 1\)

    32. \(\displaystyle \quad F = \left( -2; \ - \frac{4}{3}\right)\ ,\quad p = \frac{1}{4}\)

    33. \(\displaystyle \quad F = \left( -2; \ 0\right)\ ,\quad p = \frac{3}{4}\)

    34. \(\displaystyle \quad F = \left( -2; \ - \frac{10}{3}\right)\ ,\quad p = 1\)

    35. \(\displaystyle \quad F = \left( -1; \ \frac{2}{3}\right)\ ,\quad p = \frac{1}{4}\)

    36. \(\displaystyle \quad F = \left( -1; \ \frac{2}{3}\right)\ ,\quad p = 1\)

    37. \(\displaystyle \quad F = \left( 2; \ \frac{4}{3}\right)\ ,\quad p = \frac{1}{2}\)

    38. \(\displaystyle \quad F = \left( 2; \ - \frac{5}{3}\right)\ ,\quad p = \frac{1}{2}\)

    39. \(\displaystyle \quad F = \left( 2; \ - \frac{10}{3}\right)\ ,\quad p = 1\)

    40. \(\displaystyle \quad F = \left( 1; \ -2\right)\ ,\quad p = \frac{3}{4}\)

    41. \(\displaystyle \quad F = \left( 1; \ - \frac{7}{3}\right)\ ,\quad p = 1\)

    42. \(\displaystyle \quad F = \left( 1; \ 1\right)\ ,\quad p = \frac{3}{4}\)

  • A parte inferior da boca também é uma parábola, cuja equação geral é dada abaixo (veja o seu número \(n\) nesta lista).

  • Ache a equação canônica desta parábola.

    1. \(\displaystyle \quad x^{2} + 2 x - \frac{27 y}{13} - \frac{217}{26} = 0\)

    2. \(\displaystyle \quad x^{2} + 2 x - \frac{9 y}{13} - \frac{25}{26} = 0\)

    3. \(\displaystyle \quad x^{2} - 4 x - \frac{27 y}{13} + \frac{77}{26} = 0\)

    4. \(\displaystyle \quad x^{2} - 2 x - \frac{9 y}{13} - \frac{7}{26} = 0\)

    5. \(\displaystyle \quad x^{2} - 4 x - \frac{18 y}{13} + \frac{40}{13} = 0\)

    6. \(\displaystyle \quad x^{2} - 2 x - \frac{18 y}{13} + \frac{1}{13} = 0\)

    7. \(\displaystyle \quad x^{2} + 4 x - \frac{27 y}{13} - \frac{139}{26} = 0\)

    8. \(\displaystyle \quad x^{2} - 4 x - \frac{36 y}{13} + \frac{4}{13} = 0\)

    9. \(\displaystyle \quad x^{2} + 4 x - \frac{9 y}{13} + \frac{125}{26} = 0\)

    10. \(\displaystyle \quad x^{2} + 2 x - \frac{27 y}{13} - \frac{1}{26} = 0\)

    11. \(\displaystyle \quad x^{2} - 4 x - \frac{36 y}{13} - \frac{32}{13} = 0\)

    12. \(\displaystyle \quad x^{2} - 4 x - \frac{9 y}{13} + \frac{53}{26} = 0\)

    13. \(\displaystyle \quad x^{2} + 4 x - \frac{18 y}{13} + \frac{40}{13} = 0\)

    14. \(\displaystyle \quad x^{2} - 2 x - \frac{27 y}{13} - \frac{55}{26} = 0\)

    15. \(\displaystyle \quad x^{2} + 2 x - \frac{27 y}{13} - \frac{55}{26} = 0\)

    16. \(\displaystyle \quad x^{2} - 2 x - \frac{18 y}{13} - \frac{53}{13} = 0\)

    17. \(\displaystyle \quad x^{2} - 2 x - \frac{36 y}{13} - \frac{71}{13} = 0\)

    18. \(\displaystyle \quad x^{2} - 2 x - \frac{27 y}{13} - \frac{217}{26} = 0\)

    19. \(\displaystyle \quad x^{2} - 2 x - \frac{9 y}{13} + \frac{47}{26} = 0\)

    20. \(\displaystyle \quad x^{2} + 2 x - \frac{18 y}{13} - \frac{35}{13} = 0\)

    21. \(\displaystyle \quad x^{2} - 4 x - \frac{27 y}{13} + \frac{23}{26} = 0\)

    22. \(\displaystyle \quad x^{2} + 2 x - \frac{27 y}{13} - \frac{163}{26} = 0\)

    23. \(\displaystyle \quad x^{2} - 4 x - \frac{27 y}{13} - \frac{85}{26} = 0\)

    24. \(\displaystyle \quad x^{2} + 2 x - \frac{18 y}{13} + \frac{1}{13} = 0\)

    25. \(\displaystyle \quad x^{2} + 4 x - \frac{27 y}{13} - \frac{85}{26} = 0\)

    26. \(\displaystyle \quad x^{2} + 4 x - \frac{27 y}{13} + \frac{77}{26} = 0\)

    27. \(\displaystyle \quad x^{2} - 4 x - \frac{9 y}{13} + \frac{125}{26} = 0\)

    28. \(\displaystyle \quad x^{2} - 4 x - \frac{27 y}{13} - \frac{139}{26} = 0\)

    29. \(\displaystyle \quad x^{2} + 4 x - \frac{36 y}{13} - \frac{32}{13} = 0\)

    30. \(\displaystyle \quad x^{2} - 2 x - \frac{9 y}{13} + \frac{29}{26} = 0\)

    31. \(\displaystyle \quad x^{2} + 2 x - \frac{36 y}{13} - 11 = 0\)

    32. \(\displaystyle \quad x^{2} + 4 x - \frac{9 y}{13} + \frac{71}{26} = 0\)

    33. \(\displaystyle \quad x^{2} + 4 x - \frac{27 y}{13} + \frac{23}{26} = 0\)

    34. \(\displaystyle \quad x^{2} + 4 x - \frac{36 y}{13} - \frac{140}{13} = 0\)

    35. \(\displaystyle \quad x^{2} + 2 x - \frac{9 y}{13} + \frac{29}{26} = 0\)

    36. \(\displaystyle \quad x^{2} + 2 x - \frac{36 y}{13} - \frac{35}{13} = 0\)

    37. \(\displaystyle \quad x^{2} - 4 x - \frac{18 y}{13} + \frac{58}{13} = 0\)

    38. \(\displaystyle \quad x^{2} - 4 x - \frac{18 y}{13} + \frac{4}{13} = 0\)

    39. \(\displaystyle \quad x^{2} - 4 x - \frac{36 y}{13} - \frac{140}{13} = 0\)

    40. \(\displaystyle \quad x^{2} - 2 x - \frac{27 y}{13} - \frac{163}{26} = 0\)

    41. \(\displaystyle \quad x^{2} - 2 x - \frac{36 y}{13} - 11 = 0\)

    42. \(\displaystyle \quad x^{2} - 2 x - \frac{27 y}{13} - \frac{1}{26} = 0\)

  • Escreva uma inequação que represente a região da boca que está preenchida em vermelho na figura.

  • No Geogebra, entre a inequação e configure-a para que a área seja preenchida em vermelho.

2.5 Orelhas

  • As orelhas são os ramos de uma hipérbole de eixo real horizontal, de excentricidade \(11/10\), cujos vértices são os dois pontos do círculo do rosto que têm a coordenada \(y\) igual ao valor abaixo (veja o seu número \(n\) nesta lista).

    1. \(\displaystyle \quad y = -2\)

    2. \(\displaystyle \quad y = -2\)

    3. \(\displaystyle \quad y = 2\)

    4. \(\displaystyle \quad y = -1\)

    5. \(\displaystyle \quad y = 1\)

    6. \(\displaystyle \quad y = 1\)

    7. \(\displaystyle \quad y = -2\)

    8. \(\displaystyle \quad y = 2\)

    9. \(\displaystyle \quad y = 2\)

    10. \(\displaystyle \quad y = 2\)

    11. \(\displaystyle \quad y = 1\)

    12. \(\displaystyle \quad y = -2\)

    13. \(\displaystyle \quad y = 1\)

    14. \(\displaystyle \quad y = 1\)

    15. \(\displaystyle \quad y = 1\)

    16. \(\displaystyle \quad y = -2\)

    17. \(\displaystyle \quad y = 1\)

    18. \(\displaystyle \quad y = -2\)

    19. \(\displaystyle \quad y = 2\)

    20. \(\displaystyle \quad y = -1\)

    21. \(\displaystyle \quad y = 1\)

    22. \(\displaystyle \quad y = -1\)

    23. \(\displaystyle \quad y = -1\)

    24. \(\displaystyle \quad y = 1\)

    25. \(\displaystyle \quad y = -1\)

    26. \(\displaystyle \quad y = 2\)

    27. \(\displaystyle \quad y = 2\)

    28. \(\displaystyle \quad y = -2\)

    29. \(\displaystyle \quad y = 1\)

    30. \(\displaystyle \quad y = 1\)

    31. \(\displaystyle \quad y = -1\)

    32. \(\displaystyle \quad y = -1\)

    33. \(\displaystyle \quad y = 1\)

    34. \(\displaystyle \quad y = -2\)

    35. \(\displaystyle \quad y = 1\)

    36. \(\displaystyle \quad y = 2\)

    37. \(\displaystyle \quad y = 2\)

    38. \(\displaystyle \quad y = -1\)

    39. \(\displaystyle \quad y = -2\)

    40. \(\displaystyle \quad y = -1\)

    41. \(\displaystyle \quad y = -1\)

    42. \(\displaystyle \quad y = 2\)

  • Ache a equação canônica desta hipérbole.

  • Escreva uma inequação que represente a região das orelhas que está preenchida em rosa na figura. A distância \(d\) entre o centro do rosto e a borda vertical de cada orelha é a dada abaixo (veja o seu número \(n\) nesta lista).

    1. \(\displaystyle \quad d = \frac{27}{8}\)

    2. \(\displaystyle \quad d = \frac{9}{8}\)

    3. \(\displaystyle \quad d = \frac{27}{8}\)

    4. \(\displaystyle \quad d = \frac{9}{8}\)

    5. \(\displaystyle \quad d = \frac{9}{4}\)

    6. \(\displaystyle \quad d = \frac{9}{4}\)

    7. \(\displaystyle \quad d = \frac{27}{8}\)

    8. \(\displaystyle \quad d = \frac{9}{2}\)

    9. \(\displaystyle \quad d = \frac{9}{8}\)

    10. \(\displaystyle \quad d = \frac{27}{8}\)

    11. \(\displaystyle \quad d = \frac{9}{2}\)

    12. \(\displaystyle \quad d = \frac{9}{8}\)

    13. \(\displaystyle \quad d = \frac{9}{4}\)

    14. \(\displaystyle \quad d = \frac{27}{8}\)

    15. \(\displaystyle \quad d = \frac{27}{8}\)

    16. \(\displaystyle \quad d = \frac{9}{4}\)

    17. \(\displaystyle \quad d = \frac{9}{2}\)

    18. \(\displaystyle \quad d = \frac{27}{8}\)

    19. \(\displaystyle \quad d = \frac{9}{8}\)

    20. \(\displaystyle \quad d = \frac{9}{4}\)

    21. \(\displaystyle \quad d = \frac{27}{8}\)

    22. \(\displaystyle \quad d = \frac{27}{8}\)

    23. \(\displaystyle \quad d = \frac{27}{8}\)

    24. \(\displaystyle \quad d = \frac{9}{4}\)

    25. \(\displaystyle \quad d = \frac{27}{8}\)

    26. \(\displaystyle \quad d = \frac{27}{8}\)

    27. \(\displaystyle \quad d = \frac{9}{8}\)

    28. \(\displaystyle \quad d = \frac{27}{8}\)

    29. \(\displaystyle \quad d = \frac{9}{2}\)

    30. \(\displaystyle \quad d = \frac{9}{8}\)

    31. \(\displaystyle \quad d = \frac{9}{2}\)

    32. \(\displaystyle \quad d = \frac{9}{8}\)

    33. \(\displaystyle \quad d = \frac{27}{8}\)

    34. \(\displaystyle \quad d = \frac{9}{2}\)

    35. \(\displaystyle \quad d = \frac{9}{8}\)

    36. \(\displaystyle \quad d = \frac{9}{2}\)

    37. \(\displaystyle \quad d = \frac{9}{4}\)

    38. \(\displaystyle \quad d = \frac{9}{4}\)

    39. \(\displaystyle \quad d = \frac{9}{2}\)

    40. \(\displaystyle \quad d = \frac{27}{8}\)

    41. \(\displaystyle \quad d = \frac{9}{2}\)

    42. \(\displaystyle \quad d = \frac{27}{8}\)

  • No Geogebra, entre a inequação e configure-a para que a área seja preenchida em rosa.

3 Números dos alunos, por matrícula

matrícula n
119060029 4
122060003 8
122060004 37
122060005 22
122060006 32
122060007 17
122060008 36
122060009 35
122060010 41
122060011 18
122060012 7
122060013 28
122060014 27
122060015 33
122060016 3
122060017 6
122060018 15
122060019 31
122060020 26
122060021 29
122060022 19
122060023 25
122060028 42
122060029 1
122060030 13
122060031 16
122060033 20
122060034 24
122060035 34
122060036 21
122060038 9
122060040 5
122060041 40
215060056 2
220060041 14
221060040 12
221060047 39
622060024 10
622060025 30
622060026 23
622060027 38
822060037 11
LS0tCnRpdGxlOiAnTGlzdGEgMjogZW1vamkgY29tIGPDtG5pY2FzJwphdXRob3I6ICdmbmF1ZmVsJwplbWFpbDogJ2h0dHBzOi8vZm5hdWZlbC5naXRodWIuaW8vJwpkYXRlOiAnICAgKHYuIGByIGZvcm1hdChTeXMuRGF0ZSgpLCAiJWQvJW0vJVkiKWApJwpsYW5nOiAncHQtYnInCgpvdXRwdXQ6CiAgIyBUbyBpbnN0YWxsIHRoZXNlIG91dHB1dCBmb3JtYXRzLCBydW4KICAjICAgaW5zdGFsbC5wYWNrYWdlcygiZGV2dG9vbHMiKQogICMgICBkZXZ0b29sczo6aW5zdGFsbF9naXRodWIoImZuYXVmZWwvZm5hdWZlbFJtZCIpCiAgZm5hdWZlbFJtZDo6aHRtbF9yZXBvcnQ6CiAgICBbXQotLS0KCmBgYHtyIHNldHVwLCBpbmNsdWRlPUZBTFNFfQojIFRoZSBuZXh0IGNvbW1hbmQgY29uZmlndXJlcyBNQU5ZIHRoaW5ncyBhbmQgbG9hZHMgcXVpdGUgYSBmZXcgcGFja2FnZXMuCiMKIyBJZiB5b3Ugd2FudCB0byBzZWUgd2hhdCdzIGJlaW5nIGRvbmUsIGV4ZWN1dGUKIwojICAgY2F0KAojICAgICBzeXN0ZW0uZmlsZSgKIyAgICAgICAicm1hcmtkb3duL3Jlc291cmNlcy9SL19jb21tb25fcmVwb3J0LlIiLAojICAgICAgIHBhY2thZ2UgPSAiZm5hdWZlbFJtZCIKIyAgICAgKQojICAgKQojCiMgdG8gZmluZCBvdXQgdGhlIGxvY2F0aW9uIG9mIHRoZSBmaWxlLiBUaGVuIG9wZW4gdGhlIGZpbGUuCiMKIyBJZiB5b3Ugd2FudCB0byBjaGFuZ2UgdGhlIGNvbmZpZ3VyYXRpb24sIGNvcHkgdGhlIGZpbGUsIGVkaXQgaXQsIGFuZAojIHNvdXJjZSBpdCBpbnN0ZWFkIG9mIHRoZSBwYWNrYWdlIGZpbGUuCiMKIyBPciBzaW1wbHkgd3JpdGUgeW91ciBjb21tYW5kcyBoZXJlIGluIHRoaXMgY29kZSBjaHVuay4KCnNvdXJjZSgKICBzeXN0ZW0uZmlsZSgKICAgICJybWFya2Rvd24vcmVzb3VyY2VzL1IvX2NvbW1vbl9yZXBvcnQuUiIsCiAgICBwYWNrYWdlID0gImZuYXVmZWxSbWQiCiAgKQopCgpsaWJyYXJ5KHJldGljdWxhdGUpCnN5bXB5IDwtIGltcG9ydCgnc3ltcHknKQpweV9ydW5fc3RyaW5nKCdmcm9tIHN5bXB5IGltcG9ydCAqJykKcHlfcnVuX3N0cmluZygnaW5pdF9wcmludGluZyh1c2VfbGF0ZXggPSBUcnVlKScpCgpsaWJyYXJ5KHN5bXB5Z2x1ZSkKYGBgCgoKIyBJbnN0cnXDp8O1ZXMKCiogRmlxdWUgw6Agdm9udGFkZSBwYXJhIGNvbnN1bHRhciBvcyBjb2xlZ3VpbmhhcyBlIHBhcmEgdXNhciBwcm9ncmFtYXMgY29tbyBvIEdlb2dlYnJhLCBtYXMgW3NvbWVudGUgc29sdcOnw7VlcyAqYW5hbMOtdGljYXMqIHNlcsOjbyBhY2VpdGFzIC0tLSBuYWRhIGRlIHJlc3BvbmRlciBubyBvbGjDtG1ldHJvLl17LmhsfQoKKiBVbWEgc29sdcOnw6NvIGFuYWzDrXRpY2Egw6kgYXF1ZWxhIGVtIHF1ZSB2b2PDqiBkZXRhbGhhIHRvZG9zIG9zIHBhc3NvcyBpbnRlcm1lZGnDoXJpb3M6IFtuw6NvIHZhbGUgcmVzb2x2ZXIgdHVkbyBubyBHZW9nZWJyYSBlIGFwcmVzZW50YXIgbyByZXN1bHRhZG8gZmluYWw7IMOpIHByZWNpc28gbW9zdHJhciBvIHBhc3NvLWEtcGFzc29dey5obH0uCgoqIEVudHJlZ3VlIFsodmlhIE1vb2RsZSldey5obH0gc3VhIHJlc29sdcOnw6NvIGVzY3JpdGEgbm8gZm9ybWF0byBxdWUgdm9jw6ogcHJlZmVyaXI6IG1hbnVzY3JpdG8gZXNjYW5lYWRvIG91IGZvdG9ncmFmYWRvLCBkb2N1bWVudG8gZ2VyYWRvIHZpYSAkXExhVGVYJCBldGMuIE8gaW1wb3J0YW50ZSDDqSBxdWUgYSByZXNvbHXDp8OjbyBlc3RlamEgbGVnw612ZWwuIFtTZSB2b2PDqiBmb3IgZm90b2dyYWZhciBzdWEgcmVzb2x1w6fDo28sIHVzZSB1bSBhcGxpY2F0aXZvIGNvbW8gW0NsZWFyIFNjYW5dKGh0dHBzOi8vcGxheS5nb29nbGUuY29tL3N0b3JlL2FwcHMvZGV0YWlscz9pZD1jb20uaW5keW1vYmlsZWFwcC5kb2N1bWVudC5zY2FubmVyKSBwYXJhIGdlcmFyIHVtIHJlc3VsdGFkbyBtZWxob3IuXXsuaGx9CgoqIEFsw6ltIGRhIHJlc29sdcOnw6NvIHBvciBlc2NyaXRvLCBlbnRyZWd1ZSB0YW1iw6ltIFsodmlhIE1vb2RsZSldey5obH0gdW0gYXJxdWl2byBjb250ZW5kbyB1bSB2w61kZW8gZGUgbm8gbcOheGltbyA1IG1pbnV0b3Mgb25kZSB2b2PDqiBleHBsaWNhIGVtIGRldGFsaGVzIGEgcmVzb2x1w6fDo28gZGUgdW1hIHBhcnRlIGRhIHN1YSBxdWVzdMOjby4KCiogQm9tIHRyYWJhbGhvLgoKCiMgUXVlc3TDo28gw7puaWNhOiBjb25zdHJ1aW5kbyB1bSBlbW9qaSBjb20gY8O0bmljYXMKCk9zIGRhZG9zIGRhIHN1YSBxdWVzdMOjbyBkZXBlbmRlbSBkbyB2YWxvciBkZSAkbiQgc29ydGVhZG8gcGFyYSB2b2PDqi4KCltWZWphIG8gc2V1IHZhbG9yIGRlICRuJCBuZXN0YSBsaXN0YS5dKCNudW1zKQoKVm9jw6ogdmFpIGFjaGFyIFtlcXVhw6fDtWVzIGRlIGPDtG5pY2FzXXsuaGx9IHF1ZSBzw6NvIG8gcm9zdG8sIG9zIG9saG9zLCBvIG5hcml6LCBhIGJvY2EgZSBhcyBvcmVsaGFzIGRlIHVtIGVtb2ppIG5vICRcbWF0aGJie1J9XjIkLgoKQWzDqW0gZGlzc28sIHZvY8OqIHZhaSBhY2hhciBbaW5lcXVhw6fDtWVzIGVudm9sdmVuZG8gY8O0bmljYXNdey5obH0gcXVlIGNvcnJlc3BvbmRlbSDDoHMgw6FyZWFzIHByZWVuY2hpZGFzIGRhIGJvY2EgZSBkYXMgb3JlbGhhcy4KCjo6OiB7LnJtZGltcG9ydGFudH0KCkVtIHRvZG9zIG9zIHNldXMgY8OhbGN1bG9zIGUgcmVzcG9zdGFzLCBbdXNlIGZyYcOnw7VlcyBlIHJhZGljYWlzLl17LmhsfSAKCltOw6NvIHVzZSB2YWxvcmVzIG51bcOpcmljb3MgY29tIHbDrXJndWxhcyBkZWNpbWFpcyBlbSBtb21lbnRvIGFsZ3VtLl17LmhsfQoKOjo6CgpgYGB7ciBlY2hvPUZBTFNFfQpzZXQuc2VlZCgxMjM0NSkKCm1hdHLDrWN1bGEgPC0gYygKICAyMjAwNjAwNDEsCiAgMTIyMDYwMDMxLAogIDEyMjA2MDAyMCwKICAxMjIwNjAwMTMsCiAgMTIyMDYwMDM0LAogIDEyMjA2MDAyMSwKICA4MjIwNjAwMzcsCiAgMTIyMDYwMDA2LAogIDYyMjA2MDAyNywKICAyMTUwNjAwNTYsCiAgMTIyMDYwMDA1LAogIDEyMjA2MDAwOCwKICAxMjIwNjAwMTcsCiAgMTIyMDYwMDEyLAogIDYyMjA2MDAyNCwKICAxMjIwNjAwMDcsCiAgMTIyMDYwMDAzLAogIDEyMjA2MDAwNCwKICA2MjIwNjAwMjUsCiAgMTIyMDYwMDI5LAogIDIyMTA2MDA0MCwKICAxMjIwNjAwMzMsCiAgMTIyMDYwMDQxLAogIDEyMjA2MDAwOSwKICAxMjIwNjAwMTYsCiAgMTIyMDYwMDM4LAogIDEyMjA2MDAyOCwKICAxMjIwNjAwMzAsCiAgMTE5MDYwMDI5LAogIDIyMTA2MDA0NywKICAxMjIwNjAwMjMsCiAgMTIyMDYwMDE1LAogIDEyMjA2MDAxMCwKICAxMjIwNjAwMTQsCiAgMTIyMDYwMDM2LAogIDYyMjA2MDAyNiwKICAxMjIwNjAwMTgsCiAgMTIyMDYwMDExLAogIDEyMjA2MDAxOSwKICAxMjIwNjAwMjIsCiAgMTIyMDYwMDQwLAogIDEyMjA2MDAzNSAgCikgIAoKbl9hbHVub3MgPC0gbGVuZ3RoKG1hdHLDrWN1bGEpCiAgCm4gPC0gc2FtcGxlKDE6bl9hbHVub3MpCgpkZiA8LSB0aWJibGUobWF0csOtY3VsYSwgbikgJT4lIAogIGFycmFuZ2UobikKCiMgVmFsb3JlcyBkZSB4YywgeWMsIHJjCmNvb3JkcyA8LSBleHBhbmRfZ3JpZCgKICB4YyA9IGFzLmludGVnZXIoYygtMiwgLTEsIDEsIDIpKSwKICB5YyA9IGFzLmludGVnZXIoYygtMiwgLTEsIDEsIDIpKSwKICByYyA9IGFzLmludGVnZXIoMTo0KQopICU+JSAKICBzbGljZV9zYW1wbGUobiA9IG5fYWx1bm9zKQoKZGYgPC0gY2JpbmQoZGYsIGNvb3JkcykKYGBgCgpgYGB7cHl0aG9uIGVjaG89RkFMU0V9CngsIHkgPSBzeW1ib2xzKCd4LCB5JywgcmVhbCA9IFRydWUpCnhjLCB5YyA9IHN5bWJvbHMoJ3hfQywgeV9DJywgcmVhbCA9IFRydWUpCnJjID0gc3ltYm9scygncl9DJywgcmVhbCA9IFRydWUsIHBvc2l0aXZlID0gVHJ1ZSkKYGBgCgpbXXsjZmlndXJhfVNldSBlbW9qaSB2YWkgZmljYXIgYXNzaW06CgpgYGB7ciBlY2hvPUZBTFNFLCBvdXQud2lkdGg9JzUwJSd9CmtuaXRyOjppbmNsdWRlX2dyYXBoaWNzKCdlbW9qaS5wbmcnKQpgYGAKCgojIyBSb3N0bwoKKiBPIFtyb3N0b117LmhsfSDDqSBvIFtjw61yY3VsbyBkZSBlcXVhw6fDo28gZ2VyYWwgZGFkYSBhYmFpeG9dey5obH0gKFt2ZWphIG8gc2V1IG7Dum1lcm8gJG4kIG5lc3RhIGxpc3RhXSgjbnVtcykpLgoKKiBBY2hlIGEgW2VxdWHDp8OjbyBjYW7DtG5pY2Fdey5obH0gZGVzdGUgY8OtcmN1bG8uCgogICAgYGBge3B5dGhvbiBlY2hvPUZBTFNFfQogICAgZXFfZmFjZSA9IEVxKHhjKioyIC0gMip4Yyp4ICsgeWMqKjIgLSAyKnljKnkgKyB4KioyICsgeSoqMiAtIHJjKioyLCAwKQogICAgCiAgICBlcXNfZmFjZSA9IFsKICAgICAgZXFfZmFjZS5zdWJzKHt4YzogeHgsIHljOiB5eSwgcmM6IHJyfSkgCiAgICAgIGZvciAoeHgsIHl5LCBycikgCiAgICAgIGluIHppcChyLmRmLnhjLCByLmRmLnljLCByLmRmLnJjKQogICAgXQogICAgYGBgCiAgICAKICAgIGBgYHtyIGVjaG89RkFMU0V9CiAgICBtKAogICAgICAnMS4gJFxcZGlzcGxheXN0eWxlIFxccXVhZCAnLAogICAgICAne3tlcXNfZmFjZX19JywKICAgICAgJyRcblxuXG4nLAogICAgKQogICAgYGBgCiAgICAKCiMjIE5hcml6CgoqIE8gW25hcml6XXsuaGx9IMOpIGEgW2VsaXBzZSBkZSBlaXhvIG1haW9yIGhvcml6b250YWwgY29tIGFzIGNvb3JkZW5hZGFzIGRvIGNlbnRybywgdmFsb3JlcyBkZSAkYSQgZSBkZSAkYyQgZGFkb3MgYWJhaXhvXXsuaGx9IChbdmVqYSBvIHNldSBuw7ptZXJvICRuJCBuZXN0YSBsaXN0YV0oI251bXMpKS4KCiogQWNoZSBhIFtlcXVhw6fDo28gY2Fuw7RuaWNhXXsuaGx9IGRlc3RhIGVsaXBzZS4KCiAgICBgYGB7cHl0aG9uIGVjaG89RkFMU0V9CiAgICBjbmFyaXogPSByYyAvIDEwCiAgICBhbmFyaXogPSBjbmFyaXogKyBjbmFyaXogLyAxMAogICAgCiAgICBjZW50cm9uYXJpemVzID0gW3N5bXBpZnkoKHh4LCB5eSksIHJhdGlvbmFsPVRydWUpIAogICAgICBmb3IgKHh4LCB5eSkgaW4gemlwKHIuZGYueGMsIHIuZGYueWMpXQogICAgCiAgICBjbmFyaXplcyA9IFsKICAgICAgY25hcml6LnN1YnMoe3JjOiBycn0pIGZvciByciBpbiByLmRmLnJjCiAgICBdCiAgICAKICAgIGFuYXJpemVzID0gWwogICAgICBhbmFyaXouc3Vicyh7Y25hcml6OiBjbn0pIGZvciBjbiBpbiBjbmFyaXplcwogICAgXQogICAgYGBgCiAgICAKICAgIGBgYHtyIGVjaG89RkFMU0V9CiAgICBtKAogICAgICAnMS4gJFxcZGlzcGxheXN0eWxlIFxccXVhZCBcXHRleHR7Q2VudHJvfSA9IHt7Y2VudHJvbmFyaXplc319JywKICAgICAgJ1xcICxcXHF1YWQgYSA9IHt7YW5hcml6ZXN9fScsCiAgICAgICdcXCAsXFxxdWFkIGMgPSB7e2NuYXJpemVzfX0nLAogICAgICAnJFxuXG5cbicKICAgICkKICAgIGBgYAogICAgCgojIyBPbGhvcwoKKiBPcyBbY2VudHJvcyBkb3Mgb2xob3Ndey5obH0gc8OjbyBvcyBbZm9jb3MgZGEgZWxpcHNlIGNvbSBlcXVhw6fDo28gZ2VyYWwgZGFkYSBhYmFpeG9dey5obH0gKFt2ZWphIG8gc2V1IG7Dum1lcm8gJG4kIG5lc3RhIGxpc3RhXSgjbnVtcykpLgoKKiBBY2hlIGEgW2VxdWHDp8OjbyBjYW7DtG5pY2Fdey5obH0gZSBhcyBbY29vcmRlbmFkYXMgZG9zIGZvY29zXXsuaGx9IGRlc3RhIGVsaXBzZS4KCiAgICBgYGB7cHl0aG9uIGVjaG89RkFMU0V9CiAgICBlcV9tYXNjYXJhID0gODAgKiAoCiAgICAgICgyMSAqIHgqKigyKSkgKwogICAgICAoMTIxICogeSoqKDIpKSArCiAgICAgIC0gKCg0MiAqIHhjKSAqIHgpCiAgICAgIC0gKCgoUmF0aW9uYWwoMjQyLCA1KSAqIHJjKSArICgyNDIgKiB5YykpICogeSkgKwogICAgICAoKFJhdGlvbmFsKDI0MiwgNSkgKiByYykgKiB5YykgKwogICAgICAoUmF0aW9uYWwoLTEyMSwgODApICogcmMqKigyKSkgKwogICAgICAoMjEgKiB4YyoqKDIpKSArCiAgICAgICgxMjEgKiB5YyoqKDIpKQogICAgKQogICAgCiAgICBlcXNfbWFzY2FyYSA9IFsKICAgICAgbW9uaWMoZXFfbWFzY2FyYS5zdWJzKHt4YzogeHgsIHljOiB5eSwgcmM6IHJyfSkpCiAgICAgIGZvciAoeHgsIHl5LCBycikgCiAgICAgIGluIHppcChyLmRmLnhjLCByLmRmLnljLCByLmRmLnJjKQogICAgXQogICAgYGBgCiAgICAKICAgIGBgYHtyIGVjaG89RkFMU0V9CiAgICBtKAogICAgICAnMS4gJFxcZGlzcGxheXN0eWxlIFxccXVhZCB7e2Vxc19tYXNjYXJhfX0gPSAwJFxuXG5cbicKICAgICkKICAgIGBgYAogICAgCgoqIFtDYWRhIG9saG9dey5obH0gw6kgdW1hIFtlbGlwc2UgZGUgZWl4byBtYWlvciB2ZXJ0aWNhbCBjb20gb3MgdmFsb3JlcyBkZSAkYSQgZSBkZSAkYyQgZGFkb3MgYWJhaXhvXXsuaGx9IChbdmVqYSBvIHNldSBuw7ptZXJvICRuJCBuZXN0YSBsaXN0YV0oI251bXMpKS4KCiogQWNoZSBhcyBbZXF1YcOnw7VlcyBnZXJhaXNdey5obH0gZGVzdGFzIGVsaXBzZXMuCgogICAgYGBge3B5dGhvbiBlY2hvPUZBTFNFfQogICAgY29saG8gPSByYyAvIDQKICAgIGFvbGhvID0gcmMgLyAzCiAgICAKICAgIGNvbGhvcyA9IFsKICAgICAgY29saG8uc3Vicyh7cmM6IHJyfSkgZm9yIHJyIGluIHIuZGYucmMKICAgIF0KICAgIAogICAgYW9saG9zID0gWwogICAgICBhb2xoby5zdWJzKHtyYzogcnJ9KSBmb3IgcnIgaW4gci5kZi5yYwogICAgXQogICAgYGBgCiAgICAKICAgIGBgYHtyIGVjaG89RkFMU0V9CiAgICBtKAogICAgICAnMS4gJFxcZGlzcGxheXN0eWxlIFxccXVhZCBhID0ge3thb2xob3N9fScsCiAgICAgICdcXCAsXFxxdWFkIGMgPSB7e2NvbGhvc319JFxuXG5cbicKICAgICkKICAgIGBgYAogICAgCgojIyBCb2NhCgoqIEEgW3BhcnRlIHN1cGVyaW9yIGRhIGJvY2Fdey5obH0gw6kgdW1hIFtwYXLDoWJvbGEgY29tIGNvbmNhdmlkYWRlIHBhcmEgY2ltYSwgY29tIGFzIGNvb3JkZW5hZGFzIGRvIGZvY28gJEYkIGUgYSBkaXN0w6JuY2lhIGZvY2FsICRwJCBkYWRhcyBhYmFpeG9dey5obH0gKFt2ZWphIG8gc2V1IG7Dum1lcm8gJG4kIG5lc3RhIGxpc3RhXSgjbnVtcykpLgoKKiBBY2hlIGEgW2VxdWHDp8OjbyBjYW7DtG5pY2Fdey5obH0gZGVzdGEgcGFyw6Fib2xhLgoKICAgIGBgYHtweXRob24gZWNobz1GQUxTRX0KICAgIGZib2Nhc3VwID0gKHhjLCB5YyAtIHJjIC8gMykKICAgIHBib2Nhc3VwID0gcmMgLyA0CiAgICAKICAgIGZib2Nhc3VwcyA9IFsKICAgICAgUygKICAgICAgICAoCiAgICAgICAgICBmYm9jYXN1cFswXS5zdWJzKHt4YzogeHgsIHljOiB5eSwgcmM6IHJyfSksCiAgICAgICAgICBmYm9jYXN1cFsxXS5zdWJzKHt4YzogeHgsIHljOiB5eSwgcmM6IHJyfSkKICAgICAgICApCiAgICAgICkKICAgICAgZm9yICh4eCwgeXksIHJyKSAKICAgICAgaW4gemlwKHIuZGYueGMsIHIuZGYueWMsIHIuZGYucmMpCiAgICBdCiAgICAKICAgIHBib2Nhc3VwcyA9IFsKICAgICAgcGJvY2FzdXAuc3Vicyh7cmM6IHJyfSkgZm9yIHJyIGluIHIuZGYucmMKICAgIF0KICAgIGBgYAogICAgCiAgICBgYGB7ciBlY2hvPUZBTFNFfQogICAgbSgKICAgICAgJzEuICRcXGRpc3BsYXlzdHlsZSBcXHF1YWQgRiA9IHt7ZmJvY2FzdXBzfX0nLAogICAgICAnXFwgLFxccXVhZCBwID0ge3twYm9jYXN1cHN9fSRcblxuXG4nCiAgICApCiAgICBgYGAKCiogQSBbcGFydGUgaW5mZXJpb3IgZGEgYm9jYV17LmhsfSB0YW1iw6ltIMOpIHVtYSBbcGFyw6Fib2xhLCBjdWphIGVxdWHDp8OjbyBnZXJhbCDDqSBkYWRhIGFiYWl4b117LmhsfSAoW3ZlamEgbyBzZXUgbsO6bWVybyAkbiQgbmVzdGEgbGlzdGFdKCNudW1zKSkuCgoqIEFjaGUgYSBbZXF1YcOnw6NvIGNhbsO0bmljYV17LmhsfSBkZXN0YSBwYXLDoWJvbGEuCgogICAgYGBge3B5dGhvbiBlY2hvPUZBTFNFfQogICAgZXFfYm9jYWluZiA9IC0xOCpyYyp5IC0gMTUqcmMqKjIgKyAyNip4YyoqMiArIDI2KngqKjIgKyAxOCpyYyp5YyAtIDUyKnhjKngKICAgIAogICAgZXFzX2JvY2FpbmYgPSBbCiAgICAgIG1vbmljKGVxX2JvY2FpbmYuc3Vicyh7eGM6IHh4LCB5YzogeXksIHJjOiBycn0pKQogICAgICBmb3IgKHh4LCB5eSwgcnIpIAogICAgICBpbiB6aXAoci5kZi54Yywgci5kZi55Yywgci5kZi5yYykKICAgIF0KICAgIGBgYAogICAgCiAgICBgYGB7ciBlY2hvPUZBTFNFfQogICAgbSgKICAgICAgJzEuICRcXGRpc3BsYXlzdHlsZSBcXHF1YWQge3tlcXNfYm9jYWluZn19ID0gMCRcblxuXG4nCiAgICApCiAgICBgYGAKCiogRXNjcmV2YSB1bWEgW2luZXF1YcOnw6NvXXsuaGx9IHF1ZSByZXByZXNlbnRlIGEgcmVnacOjbyBkYSBib2NhIHF1ZSBlc3TDoSBbcHJlZW5jaGlkYSBlbSB2ZXJtZWxobyBuYSBmaWd1cmFdKCNmaWd1cmEpLgoKKiBObyBHZW9nZWJyYSwgZW50cmUgYSBpbmVxdWHDp8OjbyBlIGNvbmZpZ3VyZS1hIHBhcmEgcXVlIGEgw6FyZWEgc2VqYSBwcmVlbmNoaWRhIGVtIHZlcm1lbGhvLgoKCiMjIE9yZWxoYXMKCiogQXMgW29yZWxoYXNdey5obH0gc8OjbyBvcyByYW1vcyBkZSB1bWEgW2hpcMOpcmJvbGUgZGUgZWl4byByZWFsICAgICAgICAgIGhvcml6b250YWwsIGRlIGV4Y2VudHJpY2lkYWRlICQxMS8xMCRdey5obH0sIGN1am9zIFt2w6lydGljZXNdey5obH0gc8OjbyBvcyBbZG9pcyBwb250b3MgZG8gY8OtcmN1bG8gZG8gcm9zdG9dey5obH0gcXVlIHTDqm0gYSBbY29vcmRlbmFkYSAkeSQgaWd1YWwgYW8gdmFsb3IgYWJhaXhvXXsuaGx9IChbdmVqYSBvIHNldSBuw7ptZXJvICRuJCBuZXN0YSBsaXN0YV0oI251bXMpKS4KCiAgICBgYGB7cHl0aG9uIGVjaG89RkFMU0V9CiAgICB5b3JlbGhhID0geWMKICAgIAogICAgeW9yZWxoYXMgPSBbCiAgICAgIHlvcmVsaGEuc3Vicyh7eWM6IHl5LCByYzogcnJ9KSBmb3IgKHl5LCBycikgaW4gemlwKHIuZGYueWMsIHIuZGYucmMpCiAgICBdCiAgICBgYGAKICAgIAogICAgYGBge3IgZWNobz1GQUxTRX0KICAgIG0oCiAgICAgICcxLiAkXFxkaXNwbGF5c3R5bGUgXFxxdWFkIHkgPSB7e3lvcmVsaGFzfX0kXG5cblxuJwogICAgKQogICAgYGBgCiAgICAKKiBBY2hlIGEgW2VxdWHDp8OjbyBjYW7DtG5pY2Fdey5obH0gZGVzdGEgaGlww6lyYm9sZS4KCiogRXNjcmV2YSB1bWEgW2luZXF1YcOnw6NvXXsuaGx9IHF1ZSByZXByZXNlbnRlIGEgcmVnacOjbyBkYXMgb3JlbGhhcyBxdWUgZXN0w6EgW3ByZWVuY2hpZGEgZW0gcm9zYSBuYSBmaWd1cmFdKCNmaWd1cmEpLiBbQSBkaXN0w6JuY2lhICRkJCBlbnRyZSBvIGNlbnRybyBkbyByb3N0byBlIGEgYm9yZGEgdmVydGljYWwgZGUgY2FkYSBvcmVsaGEgw6kgYSBkYWRhIGFiYWl4b117LmhsfSAoW3ZlamEgbyBzZXUgbsO6bWVybyAkbiQgbmVzdGEgbGlzdGFdKCNudW1zKSkuCgogICAgYGBge3B5dGhvbiBlY2hvPUZBTFNFfQogICAgZG9yZWxoYSA9IDkqcmMgLyA4CiAgICAKICAgIGRvcmVsaGFzID0gWwogICAgICBkb3JlbGhhLnN1YnMoe3JjOiBycn0pIGZvciByciBpbiByLmRmLnJjCiAgICBdCiAgICBgYGAKICAgIAogICAgYGBge3IgZWNobz1GQUxTRX0KICAgIG0oCiAgICAgICcxLiAkXFxkaXNwbGF5c3R5bGUgXFxxdWFkIGQgPSB7e2RvcmVsaGFzfX0kXG5cblxuJwogICAgKQogICAgYGBgCiAgICAKCiogTm8gR2VvZ2VicmEsIGVudHJlIGEgaW5lcXVhw6fDo28gZSBjb25maWd1cmUtYSBwYXJhIHF1ZSBhIMOhcmVhIHNlamEgcHJlZW5jaGlkYSBlbSByb3NhLgoKCiMgTsO6bWVyb3MgZG9zIGFsdW5vcywgcG9yIG1hdHLDrWN1bGEgeyAjbnVtcyB9CgpgYGB7ciBlY2hvPUZBTFNFfQpkZiAlPiUgCiAgc2VsZWN0KG1hdHLDrWN1bGEsIG4pICU+JSAKICBhcnJhbmdlKG1hdHLDrWN1bGEpICU+JSAKICBrYmwoKSAlPiUgCiAga2FibGVfcGFwZXIoCiAgICBjKCdzdHJpcGVkJywgJ2hvdmVyJyksCiAgICBmdWxsX3dpZHRoID0gRkFMU0UKICApCmBgYAoK