Completeness of an Action Logic
for Timed Transition Systems

Fernando Naufel do Amaral, Edward Hermann Haeusler

Abstract

This paper defines an action logic featuring an operator that
denotes necessary conditions, postconditions, and time bounds
of actions in a timed computational transition system. Weak
completeness of an axiomatization for the logic is proved.

1 Introduction

In [8], Segerberg introduced the notion of a “bringing-it-about” § op-
erator, which, when applied to a given proposition ¢, denotes the set of
actions that bring about the truth of ¢. In this paper, we discuss the
use of a similar operator in a logical framework having computational
transition systems as its semantics.

Segerberg’s § operator has led to an extension of dynamic logic
containing elements from logics of action, where ¢ denotes actions
that lead to states where ¢ holds. In [3, 4], the operator was modified
in two different ways: the first extension was introduced to reason
about preconditions as well as postconditions, with the dyadic form pdq.
The second extension, concerned with real-time applications, added a
minimal and a maximal delay for the occurrence of each action: here,
the action term p;6"q denotes the actions that achieve ¢ in less than u
units of time, provided they were enabled in states satisfying p for at
least [ units of time.

In [3, 4], this last extension was dubbed RETOOL (Real-Time
Object-Oriented Logic, in reference to the ultimate goal of achieving
a formalization of real-time object-oriented software). The exact de-
notation of an action term pdq, however, was not agreed upon. Two



different semantics have been proposed for RETOOL, and this paper
presents yet a third one: in [3], the term pdq denotes all actions that
have p as their enabling condition (i.e., actions that are enabled if and
only if p holds); in [4], pdq was defined as denoting all actions a such
that, if a starts from a state where p holds, then it achieves ¢; in this
paper, we present a definition of pdq where this term denotes all actions
having p as a necessary condition.

2 Defining RETOOL

2.1 The Language

We assume given a set A of attribute symbols, a set I' of action symbols,
an infinite totally ordered set (TIME, <), with minimum 0, a constant
oo such that co ¢ TIME and t < oo,Vt € TIME. Also available are
countably many constants, one for each member of TIME. An adequate
theory of (TIME U{co}, <) is assumed to be contained in the logic (but
this theory is not made explicit here). The syntax of RETOOL is:

State propositions (SP): pu=a|-p|p— p';
Action terms (AT): t:=g| pdq;
Formulae: pu=alti Dta| oo — ¢ |[tlo]|[]p.

where a € A, and g € T', and p,q € SP, and [ € TIME, and u €
TIME U { 00 }, and | < u, and t,t1,t, € AT.

There are also two unary function symbols, [ and u, which can be
applied to action terms to yield their time bounds (i.e., elements of
TIME U{cc} — see below). The time bounds I(g) and u(g) of a prim-
itive action symbol ¢ are of an extra-logical nature; the time bounds
[(p.6Yq) and u(p,6Yq) of an action term built with the § operator are,
respectively, the constants x and y, and can be considered abbreviations
thereof.

2.2 Semantics

The semantics of RETOOL is defined over structures that are based
on the notion of timed transition systems [6]: given a set A of attribute
symbols and a set I' of action symbols, a timed frame F for A and I' is



a sextuple (W, —, 1, u, I, wy), where W is a set of states; for each g € T,
Jy C W x W is the transition relation for action g; | maps each g € T’
to an element I(g) € TIME; u maps each g € T' to an element u(g) €
TIME U{oo} such that u(g) > I(g); I : A — 2% is an interpretation of
the attributes, where each a € A is assigned the set of worlds where a
is true; and wy is the initial state.

Every action g € T has a lower bound [(g) and an upper bound
u(g). Formally, lower and upper bounds are defined through the use of
the notion of computation:

A timed state sequence [6] for a timed frame is a pair p =< o, T >,
where o is an infinite sequence of states (o; € W) and T is an infinite
sequence of corresponding times (T; € TIME), satisfying:

1. for all ¢ > 0, either T,y1 =T, or (T;41 > T, and 0,11 = 0;).
2. for every t € TIME, there is ¢ > 0 such that T; > ¢.

A computation [6] is a timed state sequence < o, T > such that

1. o is a computation of the underlying transition system, i.e.,

for every i > 0, there is a transition o(¢) such that o; UEQ 0i11;
2. (lower bound): for every ¢ > 0 in the domain of o,
there is a j < i such that T; —T; > [(o(¢)) and o(7) is enabled
in every state oy, for j < k <.
3. (upper bound): for every g € I and ¢ > 0, there is j > 7 with
T; — T, < u(g) such that either g is not enabled at o,

or g = a(j).

The denotation of a state proposition p in a timed frame F is the
set of states defined as follows:

[a] = I(a);
[-p]”" =W\ [p]%;
[p =P =W\[pl”) VT

The denotation of an action term t in a timed frame F is the set of

transitions defined as follows (where en(g) is the set of states where g
is enabled):



[91” = {(w,w') [w % w';

[p6"q)” = {(w,w') [3g€T [(w5w) A enfg) C[pl" A
Vo, o' ((v 2 ') = (W' € [q]F)) A
(1 <U(g) <u(g) <u)l}.

Finally, the satisfaction of a formula by a timed frame F at a state

w is defined by:

FowkEp iff w € [p]”;

F,wlk (t1 Dte) iff [t1]F C [t2]”;

FowE ¢ iff not F,w = ¢;

FwlE¢—¢ iff F,wl ¢ implies F,w = ¢';

F.w [t iff F,w' = ¢ for every w' such that (w,w') € [t]”;

2.3 Axiomatization

Figure 1 shows an adequate axiomatization of RETOOL. A represents
a set of RETOOL formulae, the derivability relation I is defined in the
usual manner, and enabled(t) is an abbreviation for the formula —[t]—.

2.4 Comments

The present work departs from the semantics of the § operator given
in [4]. There, [p;6"q] is defined as the set of all transitions (w, w') such
that w € [p] implies w’ € [¢]. This semantics mirrors the meaning of
the Hoare triples {p}g{q} (see [7]), namely that all terminating runs of
program g starting in states satisfying p will end in states satisfying ¢
(and there is no guarantee about runs that start in states not satisfying
p). According to this view, p could be considered a precondition of
program g, with ¢ a relative postcondition.

Now, the semantics presented here requires that for (w,w’) to be
denoted by p;6q, it must be the case that w % w' for some ¢ such that
en(g) C [p]. The requirement that p must be true in all worlds where
g is enabled forces us to see p as a necessary condition of the program
represented by ¢. It is simply impossible to have runs of g starting in
states not satisfying p.



(PC)

(K)

(1)

(N)

(%)
(S1)
(S2)
(S3)
(NC)
(Post)

(Bounds)

All axioms and rules of propositional calculus

(¢ = ) = ([t] — [t]y)
[ —=q) = ([lp =[]

[Jp = [t ]p
[ Ip — (enabled(t) — []p)

[]=p < —[]p

AF¢  AFp
AF[tlp AF[]p

AFenabled(t) - p AbFtlg AFI<I({t) <u(t)<u
AFtD potg

tot
(t1 Dta) = ((t2 D t3) = (t1 D t3))
(tr Dt2) = ([t2]¢ — [ta]0)

(t D pd¥q) — (enabled(t) — p)

(t > pd“q) — ([tlg)

(t D pdtq) — (enabled(t) — 1 < I(t) < u(t) < wu)

Figure 1: An Axiomatization of RETOOL




This “necessary-condition” semantics of the ¢ operator seems to us
more appropriate to reason about timed transition systems as abstract
models of complex real-time reactive systems. The “functionality” of
an action, in the sense captured by Hoare triples, can still be expressed
using action modalities. L.e., the Hoare triple {p}g{q} is closely related
to the RETOOL formula p — [g]q.

3 Weak Completeness

We now construct a canonic model for RETOOL and proceed to a
completeness proof for the axiomatization given above.

The set A¢ of attribute symbols of the canonic model is arbitrary:
A® ={aq, ay,...}. For the construction of the set I'* of action symbols,
we introduce the following definitions:

Definition 3.1 For eachpe SP,p={r| Fp <+ r}.
Definition 3.2 T = {“5,6"¢” | p,q € SP\ —,l € TIME,u € TIME U
{oo}}.

We define here an action symbol for each quadruple (p, g,/,u) com-
posed of satisfiable state propositions p and ¢ (up to tautological equiv-

alence) and time bounds [ and u. In order to ensure that these action
symbols have the desired meaning, we define the following set ¥ of

RETOOL formulae:
Definition 3.3 ¥ = {(“p;6"¢” D pid"q) A (pid™q D “Di6"q”) | p,q €
SP\—, l€ TIME, u¢& TIME U{cc}}.

Note that in every model of ¥, each action symbol “p;6"q” will
function as a “witness” to action term p;6"q, the denotation of the
symbol corresponding exactly to the denotation of the term.

More extra-logical information is necessary to build the canonic
model: we must specify the initial state through a set ® of formu-
lae. If we want state propositions pq,pa,... to be true at the initial
state wy, we define ©® = {[ |p1, [ |po,...}.} Obviously, the set {p1,po,...}
must be consistent.

We also introduce some special notation to refer to “demodalized”
formulae, where w is a set of formulae and t is any action term:

Definition 3.4 w\ [t] = {¢ | [t]¢ € w}.

I Actually, this leads to a class of canonic models, one for each choice of ©.



Definition 3.5 (The canonic model) Given the sets A, %, © and
¢, we define the canonic model as M¢ = (W*, {5 g € T}, 1%, 1°, wg),
where:

we = {® | ¢ is a maximally consistent set containing X U ©};
wx w2

PR = L(w,w') € WEx W | w\ [“55"§"] C w'};

I is such that 1°(“p;6"q”) = [ for every “p;6"q" € T'‘;

u® is such that w“(“p;6"q") = u for every “p;6"q" € '

I° is such that I°(p) = {w € W* | p € w} for every p € SP;
wy is some world in W satisfying © \ [ ].

We now want to prove weak completeness:

Vo: E¢ = Fo

This is equivalent to showing that every consistent RETOOL for-
mula is satisfiable. Now, every consistent formula is a member of some
maximally consistent set of formulae (see [5], for instance, for defini-
tions and results). We have built the canonic model so that its set of
states includes all the maximally consistent sets we are interested in.
We now show that the canonic model indeed satisfies all the formulae
contained in its states. This is done via the Coincidence Lemma:

Ywe W Yo: ¢gcw & MiwkEoe

This is proved by induction over the formation of ¢. The following
lemmas are used in the proof:?

Lemma 3.1 For all w € W¢, for all p,q € SP\ —, for all | €
TIME ,u € TIME U {oco}, for allt € AT, and for all formulae ¢:

wkitD plcs“‘q p=— whkitD “]51(5"(?”
whk pdtg Dt & wk “pié"g” Ot
w l_ [pl(SHQ]QS PEN w |_ [uﬁlduqu]d)

Lemma 3.2 For all w € W€, for all p,q € SP \ ~, forall e
TIME,u € TIME U{x}: w € en(pd’q) < wt enabled(péq).

Lemma 3.3 In the canonic model, [“p;6"q”] = [pi6"q].

2Detailed proofs of these and all other relevant lemmas can be found in [1].



4

Concluding Remarks

Work in progress includes the development of an automated theorem-
proving strategy for RETOOL and the use of a combination of RE-
TOOL with a temporal logic as a specification and verification tool for
real-time reactive systems (see [2]).

References

1]

7]

8]

Amaral, F.N., RETOOL: Uma Légica de Ac¢oes para Sis-
temas de Transicao Temporizados, M.Sc. Dissertation, Dept.
of Informatics, PUC-RJ, Brazil, 2000.

Amaral, F.N. and Haeusler, E.H. A Logic-based Approach for
Real-Time Object-oriented Software Development, in Revista de
Informatica Tedrica e Aplicada VII(1), UFRGS, Brazil, 2000.

Carvalho, S., Fiadeiro, J. and Haeusler, E.H., A Formal
Approach to Real-Time Object-Oriented Software, in Proc.
22nd IFAC/IFIP Workshop on Real-Time Programming
WRTP’97, Elsevier 1997.

Fiadeiro, J. and Haeusler, E.H., Bringing It About On Time (Ez-
tended Abstract), in Proc. I IMLLAI, Fortaleza, CE, Brazil,
1998.

Goldblatt, R., Logics of Time and Computation, CSLI Lec-
ture Notes 7, CSLI, 1992.

Henzinger, T., Manna, 7. and Pnuelli, A., Timed Transition Sys-
tems, in Real Time: Theory in Practice, LNCS 600, Springer-
Verlag, 1992.

Hoare, C.A.R., An Aziomatic Basis for Computer Programming,
in Comm. ACM 12, 1967.

Segerberg, K., Bringing It About, in Journal of Philosophical
Logic 18, 1989.

PUC-RJ (Catholic University of Rio de Janeiro) — Brazil

{fnaufel, hermann}@inf.puc-rio.br



