
Completeness of an Action Logicfor Timed Transition SystemsFernando N�aufel do Amaral, Edward Hermann HaeuslerAbstractThis paper de�nes an action logic featuring an operator thatdenotes necessary conditions, postconditions, and time boundsof actions in a timed computational transition system. Weakcompleteness of an axiomatization for the logic is proved.1 IntroductionIn [8], Segerberg introduced the notion of a \bringing-it-about" � op-erator, which, when applied to a given proposition q, denotes the set ofactions that bring about the truth of q. In this paper, we discuss theuse of a similar operator in a logical framework having computationaltransition systems as its semantics.Segerberg's � operator has led to an extension of dynamic logiccontaining elements from logics of action, where �q denotes actionsthat lead to states where q holds. In [3, 4], the operator was modi�edin two di�erent ways: the �rst extension was introduced to reasonabout preconditions as well as postconditions, with the dyadic form p�q.The second extension, concerned with real-time applications, added aminimal and a maximal delay for the occurrence of each action: here,the action term pl�uq denotes the actions that achieve q in less than uunits of time, provided they were enabled in states satisfying p for atleast l units of time.In [3, 4], this last extension was dubbed RETOOL (Real-TimeObject-Oriented Logic, in reference to the ultimate goal of achievinga formalization of real-time object-oriented software). The exact de-notation of an action term p�q, however, was not agreed upon. Two

di�erent semantics have been proposed for RETOOL, and this paperpresents yet a third one: in [3], the term p�q denotes all actions thathave p as their enabling condition (i.e., actions that are enabled if andonly if p holds); in [4], p�q was de�ned as denoting all actions a suchthat, if a starts from a state where p holds, then it achieves q; in thispaper, we present a de�nition of p�q where this term denotes all actionshaving p as a necessary condition.2 De�ning RETOOL2.1 The LanguageWe assume given a set A of attribute symbols, a set � of action symbols,an in�nite totally ordered set (TIME, �), with minimum 0, a constant1 such that 1 62 TIME and t � 1;8t 2 TIME. Also available arecountably many constants, one for each member of TIME. An adequatetheory of (TIME [f1g, �) is assumed to be contained in the logic (butthis theory is not made explicit here). The syntax of RETOOL is:State propositions (SP): p ::= a j :p j p! p0;Action terms (AT): t ::= g j pl�uq;Formulae: � ::= a j t1 � t2 j :� j �! �0 j [t]� j []p.where a 2 A, and g 2 �, and p; q 2 SP , and l 2 TIME, and u 2TIME [f 1 g, and l � u, and t; t1; t2 2 AT .There are also two unary function symbols, l and u, which can beapplied to action terms to yield their time bounds (i.e., elements ofTIME [f1g { see below). The time bounds l(g) and u(g) of a prim-itive action symbol g are of an extra-logical nature; the time boundsl(px�yq) and u(px�yq) of an action term built with the � operator are,respectively, the constants x and y, and can be considered abbreviationsthereof.2.2 SemanticsThe semantics of RETOOL is de�ned over structures that are basedon the notion of timed transition systems [6]: given a set A of attributesymbols and a set � of action symbols, a timed frame F for A and � is

a sextuple (W;!; l; u; I; w0), where W is a set of states; for each g 2 �,g! � W �W is the transition relation for action g; l maps each g 2 �to an element l(g) 2 TIME; u maps each g 2 � to an element u(g) 2TIME [f1g such that u(g) � l(g); I : A! 2W is an interpretation ofthe attributes, where each a 2 A is assigned the set of worlds where ais true; and w0 is the initial state.Every action g 2 � has a lower bound l(g) and an upper boundu(g). Formally, lower and upper bounds are de�ned through the use ofthe notion of computation:A timed state sequence [6] for a timed frame is a pair � =< �;T >,where � is an in�nite sequence of states (�i 2 W) and T is an in�nitesequence of corresponding times (Ti 2 TIME), satisfying:1. for all i � 0, either Ti+1 = Ti, or (Ti+1 > Ti and �i+1 = �i).2. for every t 2 TIME, there is i � 0 such that Ti � t.A computation [6] is a timed state sequence < �;T > such that1. � is a computation of the underlying transition system, i.e.,for every i � 0, there is a transition �(i) such that �i �(i)! �i+1;2. (lower bound): for every i � 0 in the domain of �,there is a j � i such that Ti � Tj > l(�(i)) and �(i) is enabledin every state �k for j � k � i.3. (upper bound): for every g 2 � and i � 0, there is j � i withTj � Ti � u(g) such that either g is not enabled at �jor g = �(j).The denotation of a state proposition p in a timed frame F is theset of states de�ned as follows:[[a]] = I(a);[[:p]]F =W n [[p]]F ;[[p! p0]]F = (W n [[p]]F) [[[p0]]F .The denotation of an action term t in a timed frame F is the set oftransitions de�ned as follows (where en(g) is the set of states where gis enabled):

[[g]]F = f(w;w0) j w g! w0g;[[pl�uq]]F = f(w;w0) j 9g 2 � [(w g! w0) ^ en(g) � [[p]]F ^8v; v0((v g! v0)) (w0 2 [[q]]F)) ^(l � l(g) � u(g) � u)]g.Finally, the satisfaction of a formula by a timed frame F at a statew is de�ned by:F ; w j= p i� w 2 [[p]]F ;F ; w j= (t1 � t2) i� [[t1]]F � [[t2]]F ;F ; w j= :� i� not F ; w j= �;F ; w j= �! �0 i� F ; w j= � implies F ; w j= �0;F ; w j= [t]� i� F ; w0 j= � for every w0 such that (w;w0) 2 [[t]]F ;F ; w j= []p i� F ; w0 j= p.2.3 AxiomatizationFigure 1 shows an adequate axiomatization of RETOOL. � representsa set of RETOOL formulae, the derivability relation ` is de�ned in theusual manner, and enabled(t) is an abbreviation for the formula :[t]?.2.4 CommentsThe present work departs from the semantics of the � operator givenin [4]. There, [[pl�uq]] is de�ned as the set of all transitions (w;w0) suchthat w 2 [[p]] implies w0 2 [[q]]. This semantics mirrors the meaning ofthe Hoare triples fpggfqg (see [7]), namely that all terminating runs ofprogram g starting in states satisfying p will end in states satisfying q(and there is no guarantee about runs that start in states not satisfyingp). According to this view, p could be considered a precondition ofprogram g, with q a relative postcondition.Now, the semantics presented here requires that for (w;w0) to bedenoted by pl�uq, it must be the case that w g! w0 for some g such thaten(g) � [[p]]. The requirement that p must be true in all worlds whereg is enabled forces us to see p as a necessary condition of the programrepresented by g. It is simply impossible to have runs of g starting instates not satisfying p.

(PC) All axioms and rules of propositional calculus(K) [t](� !)! ([t]� ! [t])[](p! q)! ([]p! []q)(I) []p! [t][]p[t][]p! (enabled(t) ! []p)[]:p$:[]p(N) � ` �� ` [t]� � ` p� ` []p(�) � ` enabled(t) ! p � ` [t]q � ` l � l(t) � u(t) � u� ` t � pl�uq(S1) t � t(S2) (t1 � t2)! ((t2 � t3)! (t1 � t3))(S3) (t1 � t2)! ([t2]�! [t1]�)(NC) (t � pl�uq)! (enabled(t) ! p)(Post) (t � pl�uq)! ([t]q)(Bounds) (t � pl�uq)! (enabled(t) ! l � l(t) � u(t) � u)Figure 1: An Axiomatization of RETOOL

This \necessary-condition" semantics of the � operator seems to usmore appropriate to reason about timed transition systems as abstractmodels of complex real-time reactive systems. The \functionality" ofan action, in the sense captured by Hoare triples, can still be expressedusing action modalities. I.e., the Hoare triple fpggfqg is closely relatedto the RETOOL formula p! [g]q.3 Weak CompletenessWe now construct a canonic model for RETOOL and proceed to acompleteness proof for the axiomatization given above.The set Ac of attribute symbols of the canonic model is arbitrary:Ac = fa1; a2; :::g. For the construction of the set �c of action symbols,we introduce the following de�nitions:De�nition 3.1 For each p 2 SP , ~p = fr j ` p$ rg.De�nition 3.2 �c = f\~pl�u~q" j p; q 2 SP n ~?; l 2 TIME; u 2 TIME [f1gg.We de�ne here an action symbol for each quadruple (p; q; l; u) com-posed of satis�able state propositions p and q (up to tautological equiv-alence) and time bounds l and u. In order to ensure that these actionsymbols have the desired meaning, we de�ne the following set � ofRETOOL formulae:De�nition 3.3 � = f(\~pl�u~q" � pl�uq) ^ (pl�uq � \~pl�u~q") j p; q 2SP n ~?; l 2 TIME ; u 2 TIME [f1gg.Note that in every model of �, each action symbol \~pl�u~q" willfunction as a \witness" to action term pl�uq, the denotation of thesymbol corresponding exactly to the denotation of the term.More extra-logical information is necessary to build the canonicmodel: we must specify the initial state through a set � of formu-lae. If we want state propositions p1; p2; ::: to be true at the initialstate w0, we de�ne � = f[]p1; []p2; :::g.1 Obviously, the set fp1; p2; :::gmust be consistent.We also introduce some special notation to refer to \demodalized"formulae, where w is a set of formulae and t is any action term:De�nition 3.4 w n [t] = f� j [t]� 2 wg.1Actually, this leads to a class of canonic models, one for each choice of �.

De�nition 3.5 (The canonic model) Given the sets Ac, �, � and�c, we de�ne the canonic model asM c = (W c; f g!j g 2 �cg; lc; uc; Ic; wc0),where:W c = f� j � is a maximally consistent set containing � [�g;\~pl�u~q"! = f(w;w0) 2 W c �W c j w n [\~pl�u~q"] � w0g;lc is such that lc(\~pl�u~q") = l for every \~pl�u~q" 2 �c;uc is such that uc(\~pl�u~q") = u for every \~pl�u~q" 2 �c;Ic is such that Ic(p) = fw 2 W c j p 2 wg for every p 2 SP ;wc0 is some world in W c satisfying � n [].We now want to prove weak completeness:8� : j= �) ` �This is equivalent to showing that every consistent RETOOL for-mula is satis�able. Now, every consistent formula is a member of somemaximally consistent set of formulae (see [5], for instance, for de�ni-tions and results). We have built the canonic model so that its set ofstates includes all the maximally consistent sets we are interested in.We now show that the canonic model indeed satis�es all the formulaecontained in its states. This is done via the Coincidence Lemma:8w 2W c; 8� : � 2 w , M c; w j= �This is proved by induction over the formation of �. The followinglemmas are used in the proof:2Lemma 3.1 For all w 2 W c, for all p; q 2 SP n ~?, for all l 2TIME ; u 2 TIME [f1g, for all t 2 AT , and for all formulae �:w ` t � pl�uq , w ` t � \~pl�u~q"w ` pl�uq � t , w ` \~pl�u~q" � tw ` [pl�uq]� , w ` [\~pl�u~q"]�Lemma 3.2 For all w 2 W c, for all p; q 2 SP n ~?, for all l 2TIME; u 2 TIME [f1g: w 2 en(pl�uq) , w ` enabled(pl�uq).Lemma 3.3 In the canonic model, [[\~pl�u~q"]] = [[pl�uq]].2Detailed proofs of these and all other relevant lemmas can be found in [1].

4 Concluding RemarksWork in progress includes the development of an automated theorem-proving strategy for RETOOL and the use of a combination of RE-TOOL with a temporal logic as a speci�cation and veri�cation tool forreal-time reactive systems (see [2]).References[1] Amaral, F.N., RETOOL: Uma L�ogica de A�c~oes para Sis-temas de Transi�c~ao Temporizados, M.Sc. Dissertation, Dept.of Informatics, PUC-RJ, Brazil, 2000.[2] Amaral, F.N. and Haeusler, E.H. A Logic-based Approach forReal-Time Object-oriented Software Development, in Revista deInform�atica Te�orica e Aplicada VII(1), UFRGS, Brazil, 2000.[3] Carvalho, S., Fiadeiro, J. and Haeusler, E.H., A FormalApproach to Real-Time Object-Oriented Software, in Proc.22nd IFAC/IFIP Workshop on Real-Time ProgrammingWRTP'97, Elsevier 1997.[4] Fiadeiro, J. and Haeusler, E.H., Bringing It About On Time (Ex-tended Abstract), in Proc. I IMLLAI, Fortaleza, CE, Brazil,1998.[5] Goldblatt, R., Logics of Time and Computation, CSLI Lec-ture Notes 7, CSLI, 1992.[6] Henzinger, T., Manna, Z. and Pnuelli, A., Timed Transition Sys-tems, inReal Time: Theory in Practice, LNCS 600, Springer-Verlag, 1992.[7] Hoare, C.A.R., An Axiomatic Basis for Computer Programming,in Comm. ACM 12, 1967.[8] Segerberg, K., Bringing It About, in Journal of PhilosophicalLogic 18, 1989.PUC-RJ (Catholic University of Rio de Janeiro) { Brazilffnaufel, hermanng@inf.puc-rio.br

