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Abstract
We present a structural model for (meta)heuristic search strategies for solving computational prob-
lems. The model is defined through the use of topos-theoretical tools and techniques, which provide
an appropriate internal logic (with the language of local set theory) where objects of interest can be
represented.
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1 Introduction
One of the most interesting developments of topos theory [7, 8] from a logical point
of view has been the investigation of the internal logics of topoi by means of local set
theory (henceforth LST) [1]. This is accomplished by viewing any topos as a model
of a theory in the language of LST, which is basically a higher-order language or
type theory. The interpretation of such a theory in the chosen topos allows one to
conveniently treat the objects of the topos as “sets” and the morphisms of the topos
as “functions”.

Higher-order logic and type theory have been very important in foundational stud-
ies in computer science. Recent work has suggested practical applications of topos
theory to computing (see, e.g., [12] for a study involving databases). Our contribu-
tion focuses on an application of topos theory and LST to the field of (meta)heuristic
search strategies [6], which attempt to solve a given computational problem by making
use of “rules of thumb”, approximations, guesses and stochastic processes, sometimes
inspired by physical (e.g. simulated annealing) and biological (e.g. genetic algo-
rithms) phenomena. Obviously, (meta)heuristic strategies cannot guarantee correct
or optimal solutions all of the time; their usefulness comes from the fact that they
are often able to produce good quality solutions when applied to intractable problems
(i.e., those which cannot be solved by exact algorithms in acceptable time).

The main goal of the research reported in this paper is the development of a
logic-based formal model for (meta)heuristics general enough to encompass the many
(sometimes informal) definitions found in the literature. Among such definitions, we
may quote, for example: “Heuristics are criteria, methods, or principles for deciding
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which among several alternative courses of action promises to be the most effective
in order to achieve some goal” [11]. According to [16], a metaheuristic is “an iterative
master process that guides and modifies the operations of subordinate heuristics to
efficiently produce high-quality solutions.”

In a more abstract, unified view, both heuristics and metaheuristics are techniques
for solving a given problem by first defining some kind of “space” inhabited by candi-
date answers (which are related by some structure imposed by the definition of such
a space) and then defining a strategy for moving in the defined space in search of an
appropriate answer. These two aspects — the search space and the search strategy
— are the basis for our formal definition of (meta)heuristics.

A general enough formal model for problems and (meta)heuristics can be of great
use in the process of choosing, comparing and combining different strategies for solving
computational problems of any kind. A logic-based model, such as the one presented
here, could allow us to represent (meta)heuristics at any desired level of abstrac-
tion. The model could provide means for transforming higher-level descriptions of
(meta)heuristics into more concrete, detailed representations, much in the same way
a software framework is refined and instantiated to generate executable code. More-
over, our logic-based model could allow us to develop a deductive calculus to reason,
again at any desired level of abstraction, about (meta)heuristics and their character-
istics, as well as the relationships among them.

In this attempt to reconcile abstraction and concreteness, the tools and techniques
of category theory show their usefulness. More precisely, by using topos theory [7, 8],
we will define a universe — a topos — that comes equipped with a logical language
and theory of its own. It is in this logic, by using local set theory (LST), that our
logic-based formal model for (meta)heuristics will be developed. Topoi are, in a strong
sense, the formal counterparts of sheaves, a geometrical concept that also arises in
logical form. Thus, in a single theoretical approach we are able to put together
two of the main aspects of (meta)heuristics: the geometry of search spaces and the
logic of search strategies. Implementing a (meta)heuristic will then be a matter of
coding search spaces as functors (data structures) and search strategies as natural
transformations (algorithms).

The main advantage of using LST to construct a formal model of (meta)heuristics
is the fact that, once we define an appropriate topos relating problems and search
spaces, we will immediately have at our disposal a logical theory whose model is the
defined topos. This eliminates questions of expressiveness, consistency and complete-
ness which would fall upon us if we were to construct our logical theory otherwise. In
other words, one of the greatest benefits of LST is that the model (i.e., the defined
topos) comes equipped with a logical language and theory of its own.

2 Defining the topos
We assume the reader is familiar with basic categorical and topos-theoretical notions
such as objects, morphisms, (contravariant) functors, natural transformations etc.
Comprehensive references on the subject are [7, 8].
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2.1 Problems and reductions
We define a category with computational problems as objects and problem reductions
as morphisms. We base our definitions on the general theory of problems presented
in [14].

Definition 2.1 (Problems)
A problem is a triple P = 〈D,R, p〉, with D and R countable, nonempty sets, and
p ⊆ D × R a relation. Elements d ∈ D are called data or instances; elements r ∈ R
are called results or answers; the relation p is called the problem condition; (d, r) ∈ p
means that r is a correct answer for instance d.

Problems are related to each other through the notion of reduction:

Definition 2.2 (Reductions)
Given P = 〈D,R, p〉 and P ′ = 〈D′, R′, p′〉, a reduction P

(τ,σ)−−−→ P ′ consists of a pair
(τ, σ) of functions computable in polynomial time, with τ : D → D′ and σ : R′ → R
such that correct answers are preserved; more precisely, for every d ∈ D and every
r′ ∈ R′, we have that (τ(d), r′) ∈ p′ ⇒ (d, σ(r′)) ∈ p.

There may be many reductions from a problem P to a problem P ′. In this article,
however, we assume a set of problems has been defined such that between any two
problems in the set there is at most one reduction.1 It can be easily checked that
problems and reductions form a category. This corresponds to the following definition:

Definition 2.3 (The category Prob of problems)
Prob is a designated thin, skeletal category2 having as objects a set of problems and
having as morphisms a set of reductions between these problems.

It should be noted that Prob is a small category (one whose collection of objects
is a set). This will turn out to be important in the proof of Theorem 2.8 below.

2.2 Forests and forest assignments
Part of the definition of a (meta)heuristic strategy to solve a given problem is the
construction of the search space. In state space search, this means defining states
as well as actions corresponding to arcs (or transitions) between the states; in local
search, this means defining neighborhoods; in population-based search, this means
defining populations and operators to transform them.

We will consider a search space for a problem P to be a forest whose nodes are asso-
ciated with certain information about P . A convenient category-theoretical definition
of forests and forest homomorphisms is the following:

Definition 2.4 (Forests, forest homomorphisms)
A forest S is a functor S : ωop → Set, where ωop is the category 0← 1← 2← · · · . A
homomorphism h from a forest S to a forest S′ is a natural transformation h : S �−→ S′.

To see how a functor S : ωop → Set defines a forest, one views S(0) as the set
of root vertices of the forest, S(1) as the set of vertices on the second level of the

1This constraint will be justified in Sect. 2.4.
2A thin category is one where, given any two objects a and b, there is at most one morphism from a to b. A

skeletal category is one where object isomorphism coincides with object equality.
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forest, and so on. The functor S will map the morphism 0 ← 1 to the function
parent1 : S(1) → S(0), the morphism 1 ← 2 to the function parent2 : S(2) → S(1)
and so on.

Definition 2.5 (The category Forest)
The category Forest of forests and forest homomorphisms is the functor category
Setωop

.

We assign forests to problems by means of a contravariant functor from Prob to
the category Forest of forests:

Definition 2.6 (Forest Assignment)
A Forest Assignment (FA) is a functor F : Probop → Forest.

The fact that F is a contravariant functor is indicated by the superscript “op” in
Probop. This means that a reduction P

(τ,σ)−−−→ P ′ is mapped to a forest homomor-
phism FP ′ F (τ,σ)−−−−→ FP , in the opposite direction. This corresponds to the intuition
that, as P reduces to P ′ (and answers to P ′ can be transformed into answers to P ),
a traversal of the search space of P ′ can be transformed into a traversal of the search
space of P .

As each FA is a functor, the collection of all FA’s can be structured as a functor
category:

Definition 2.7 (The category FA of Forest Assignments)
FA is the functor category ForestProbop

.

An object F of FA assigns a forest FP to each problem P in Prob. The assigned
forest FP has unlabeled nodes and edges. Ultimately, we will want to label the nodes
with information concerning the answers of P . For now, however, we may appreciate
the fact that we already have a topos:

Theorem 2.8
The category FA is a topos.

Proof. FA is the functor category (Setωop

)Probop

, which, in turn, is isomorphic to
the functor category Setωop×Probop

, a category of the form SetC, which is a presheaf
topos [7, 8] as long as C is a small category, which is the case here.

2.3 Answer forests and answer forest assignments
Given a problem P = 〈D,R, p〉 and an FA F , we want the forest FP to be labeled
with information concerning the answers of P . More precisely, we want to label each
node n of FP with a set of answers λ(n) ⊆ R. This is justified by the following:

• In population-based metaheuristics, each node in the search space corresponds to
a population, i.e., a set of answers;
• In local search metaheuristics and transformation heuristics, each node corre-

sponds to a single answer r, which can be seen as the singleton {r};
• In constructive heuristics, each node corresponds to a “partial” answer, and moving

from one node to another corresponds to adding “elements” to the partial answer
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in order to build a complete answer. One example would be to try to solve the
Traveling Salesman Problem (TSP — see [11], e.g.) by picking one initial city
and subsequently adding one city at a time, constructing a complete tour in an
incremental fashion. In [9], e.g., it is shown that a partial answer of this kind
can be seen as (or rather represented by) a set of answers, a point of view which
provides an interesting connection between generate-and-test methods of AI and
split-and-prune methods of Operations Research. In the example of the TSP, a
partial tour t can be represented by the set of all complete tours having t as a
prefix.

So we want FAs to work as follows: to each problem P = 〈D,R, p〉 in Prob,
the FA F will assign a forest FP whose nodes are labeled by sets of answers in R.
Furthermore, given a reduction P

(τ,σ)−−−→ P ′, the FA F will assign a labeled forest
homomorphism FP ′ F (τ,σ)−−−−→ FP with the added constraint that a node n′ of FP ′

labeled by a set A′ of answers must be mapped to a node F (τ, σ)(n′) of FP labeled
by the set σ(A′) = {σ(r′) | r′ ∈ A′}.

This arrangement corresponds to the intuition that finding the answer r′ in the
search space for P ′ implies finding the answer σ(r′) in the search space for P , which
reduces to P ′. Formally, this can be achieved by defining an answer forest assignment
(AFA) to be a special kind of functor from Probop to the category LForest of labeled
forests (whose morphisms preserve the node labels as desired). However, a more
elegant alternative presents itself: we can label the forests assigned to problems by
means of a categorical construction involving a specific object of the category FA.

Definition 2.9 (The L functor)
L : Probop → Forest is the object of FA that maps each problem P = 〈D,R, p〉 to
the forest LP with infinitely many levels, whose set of nodes at level 0 is P(R) (the
powerset of R), and whose set of nodes at level i, for i > 0, is P(R)i+1, the set of
all (i + 1)-tuples whose components are sets of answers in R. In this forest LP , the
parent i function (i > 0) mapping each node at the ith level to its parent is simply the
projection function in the first i components of a (i+1)-tuple πi : P(R)i+1 → P(R)i.

As for morphisms, L maps a reduction P
(τ,σ)−−−→ P ′ to the forest homomorphism

LP ′ L(τ,σ)−−−−→ LP such that a node (A′
1, . . . , A

′
i) at the i-th level of LP ′ is mapped to

the node (σ(A′
1), . . . , σ(A′

i)) at the i-th level of LP .

It can be seen that, given a forest S and a problem P = 〈D,R, p〉, a forest homo-
morphism S

λ−→ LP will label the nodes of S with sets of answers in R. A node n at
the i-th level of S with λ(n) = (A1, . . . , Ai) is considered to be labeled by the set Ai.
The other components A1, . . . , Ai−i store the labels of the ancestor nodes of n from
the root down to the parent of n.

Furthermore, given an FA F , if the labeling must occur consistently for all search
forests assigned by F , then a natural transformation λ : F �−→ L will do. The main
consequence of these considerations is the fact that, if we want our FAs to assign
labeled forests to problems, it suffices to take pairs 〈F, λ〉, with F an FA and λ a
natural transformation from F to L, as shown in Fig. 1.

It turns out that pairs of the form 〈F, λ〉 as above form a category themselves,
called the slice category FA ↓ L. What’s more, by the Fundamental Theorem of
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Prob Forest

P

(τ,σ)

��

FP
λP // LP

F //

λ

��
L

//

P ′ FP ′
λP ′

//

F (τ,σ)

OO

LP ′

L(τ,σ)

OO

Fig. 1. Labeling search forests via a natural transformation λ : F �−→ L

Topoi [7, 8], a slice category of any topos is again a topos. So we find ourselves with
two topoi at our disposal:

1. The topos FA, whose objects are FAs (functors assigning unlabeled forests to
problems); and

2. The topos FA ↓ L, whose objects are pairs of the form 〈F, λ〉, with F an object
of FA and λ a natural transformation from F to L; i.e., a collection of forest
homomorphisms giving a labeling of the forests assigned by F . We call this second,
sliced, topos AFA for (Answer Forest Assignments).

Both FA and AFA are topoi with internal logics suitable for specifying (meta)heur-
istics. For the development of our model, we choose to use the internal logic of FA
instead of that of AFA for the following reasons: (1) every object of the slice topos
AFA can be represented in the internal logic of FA by a term of the form 〈F, λ〉; (2)
every morphism of the slice topos AFA can be represented in the internal logic of FA
by a function term of the form α : 〈F, λ〉 → 〈F ′, λ′〉 satisfying some simple constraints;
and (3) special objects of FA (such as the terminal object and the subobject classifier)
are easier to describe and to manipulate than the corresponding objects of AFA,
because in this latter topos, all the information about the structure and the labeling
of the forests is contained in the objects, whereas in FA the structure of the forests
is given by the objects (the functors F ) and the labeling is given by the morphisms
(the natural transformations λ : F �−→ L). In fact, it is generally the case [1, pp. 131ff]
that the internal logic of a slice topos C ↓ A can be represented in the internal logic
of the unsliced topos C.

2.4 A remark: the number of reductions between problems
Between two problems P and P ′ there may exist many reductions (possibly infinitely
many). This fact creates a bit of a difficulty when we attempt to assign forest homo-
morphisms to reductions: as shown in Fig. 2, all four forests FP , FP ′, LP and LP ′

are fixed by F and L; yet these four forests must allow for as many homomorphisms
as there are reductions from P to P ′. Depending on the amount of such reductions,
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Prob Forest

P

!! �� ��

···

��

FP
λP // LP

P ′ FP ′

== CC II

···

OO

λP ′ // LP ′

== CC II

···

OO

Fig. 2. Several reductions between two problems

it may occur that the forest FP must contain one node labeled by A for each set A
of answers to P . This is a rather unrealistic situation: in practice, when defining a
search space, one does not want to account for all possible reductions between the
problem under consideration and those that are reducible to it. It is in order to avoid
this inconvenience that we require that Prob be a thin and skeletal category, so that
there may exist at most one reduction between any two problems.

3 The internal logic of FA

Our defined topos FA is a presheaf topos (i.e., one of the form SetC). The logical
structure of such topoi (e.g., terminal objects, subobject classifiers, etc.) has been
known for quite a long time. The calculations yielding the corresponding objects of
FA are merely special cases of the general calculations that can be found in, e.g., [5]
or [7]. In this section, we describe some interesting aspects of the logical structure
of FA only in order to appreciate the meaning of those general constructions in the
context of problems, reductions and search spaces.

3.1 Terminal object
The terminal object of FA is the functor 1 : Probop → Forest mapping each problem
P to the forest 1P consisting of a single linear tree with infinitely many vertices,
depicted as • − • − • − • − · · · , with the root on the left. The functor 1 maps each
reduction P

(τ,σ)−−−→ P ′ to the identity homomorphism from 1P to itself.
An interesting use of the terminal object is in the definition of node in the internal

logic of FA. To simplify, assume Prob consists of a single problem P . Then, given a
forest assignment F , a node v of the forest FP is identified with the finite path from
the root to the node. In other words, a node v is a nonempty, finite, linear subobject
of the forest. Nonemptiness corresponds to v being different from the initial object
∅ (the empty forest); finiteness corresponds to the unique morphism !v : v → 1 not
being epic; linearity corresponds to !v being monic.
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3.2 Subobject classifier
First, some new notation must be developed. Let Prob be a category of problems
as described in Def. 2.3. Following [7], we define a set S of problems in Prob to be
hereditary if for each problem P ∈ S, all problems in Prob reducible to P are also in
S. Analogously, a set S of natural numbers is hereditary if for each natural n ∈ S,
all naturals n′ with n′ ≤ n are also in S.

We also write [P ) for the set {P ′ | P ′ −→ P in Prob} of all problems reducible to
P , and we write [P )+ for the set {S ⊆ [P ) | S hereditary } of all hereditary subsets
of [P ).

For simplicity, suppose the set of problems in Prob is countable.3 Then, for any
P , the set [P ) is countable and can be totally ordered, so that any subset of [P ) can
be represented by a (possibly infinite) tuple (t1, t2, . . .), where each component ti is
either “−” or “+”. The symbol “−” as the ith component means that problem Pi

is not in the subset in question; the symbol “+” as the ith component means that
problem Pi is in the subset in question.

An element of [P )+ (i.e., a hereditary subset of [P )) can then be represented by
a (possibly infinite) tuple satisfying the following condition: for all ti, tj , (Pi −→
Pj in Prob =⇒ (tj = “ + ” =⇒ ti = “ + ”)).

The object of truth values of FA is a functor Ω : Probop → Forest. As will be
seen below, each node at level k of the forest Ω(P ) assigned to P corresponds to a set
S of pairs of the form (k′, P ′), with k′ ≤ k and P ′ −→ P in Prob, such that

(k′, P ′) ∈ S =⇒ ∀n ≤ k′ : ∀Q with Q −→ P ′ in Prob : (n,Q) ∈ S

i.e., S is hereditary in both components of the pairs.
A set S of this kind (and the node v at level k of Ω(P ) that S represents) will also

be denoted by a (possibly infinite) tuple (t1, t2, . . .), but this time each component ti is
either the symbol “−” or a natural number k′ less than or equal to k. The symbol “−”
as ti means that there does not exist in S any pair with Pi as the second component.
The value k′ as ti means that S contains all pairs (n, Pi) with n ≤ k′. The additional
constraint that states that the tuple represents a hereditary set in both components
is: for all ti, tj , (Pi −→ Pj in Prob =⇒ (tj ≤ ti)).

We can now describe the subobject classifier of FA. The object of truth values Ω
maps each problem P to a forest Ω(P ) having [P )+ as the set of vertices at level 0.
I.e., there is a tree in Ω(P ) for each hereditary set of problems reducible to P in Prob.
Given a node v at level k of the forest Ω(P ), we denote v by a tuple (t1, t2, . . .), with
ti = “− ” or ti a natural number less than or equal to k for each i. Children of v in
Ω(P ) will be of the form v′ = (t′1, t

′
2, . . .), where for each i, it holds that{

t′i = ti if ti < k or ti = “− ”
t′i ∈ {k, k + 1} if ti = k

Given P
(τ,σ)−−−→ P ′ in Prob, we have that [P ) ⊆ [P ′). Ω maps (τ, σ) to the forest

homomorphism Ω(τ, σ) that maps each node v′ = (t′1, t
′
2, . . .) of forest Ω(P ′) to the

node of Ω(P ) represented by the projection of v′ over the components t′i corresponding

3Because D and R are countable in Def. 2.1, the set of problems in Prob has at most the cardinality of the
continuum.



Using the Internal Logic of a Topos to Model Search Spaces for Problems 9

− 0

--
--

-

− 0 1

--
--

-

− 0 1 2

++
++

+

...
...

...
...

...

(−,−) (0,−)

88
88

8

(−,−) (0,−) (1,−)

88
88

8

(−,−) (0,−) (1,−) (2,−)

..
..

.

...
...

...
...

...

(0,0)

33
33

3

PPPPPPPPPPP

(0,0) (1,0)

33
33

3 (1,1)

33
33

3

JJJ
JJJ

JJ

(0,0) (1,0) (2,0)

++
++

+ (1,1) (2,1)

++
++

+ (2,2)

++
++

+

22
22

22

...
...

...
...

...
...

...
...

...
...

Fig. 3. Fragments of forests Ω(P1) (left) and Ω(P2) (right).

to problems Pi ∈ [P ). That is, Ω(τ, σ)(v′) = (ti1, ti2, ti3, . . .) with {Pi1, Pi2, Pi3, . . .} =
[P ) ∩ [P ′) following the same ordering of [P ′).

The truth value > : 1 → Ω is the natural transformation such that >P is the
homomorphism mapping forest 1P to the infinite branch (0, 0, 0, . . .)− (1, 1, 1, . . .)−
(2, 2, 2, . . .)− · · · of forest Ω(P ).

The truth value ⊥ : 1 → Ω is the natural transformation such that ⊥P is the ho-
momorphism mapping forest 1P to the infinite branch (−,−,−, . . .)− (−,−,−, . . .)−
(−,−,−, . . .)− · · · of forest Ω(P ).

It can be shown that Ω has infinitely many truth values, each one of them corre-
sponding to an infinite branch of each forest Ω(P ).

As a very simple example, suppose Prob consists of two problems P1 and P2, with
P1 −→ P2. The first three levels of the forests Ω(P1) and Ω(P2) are shown in Fig. 3.

3.3 Natural numbers object
Any presheaf topos has a natural numbers object (NNO). In the case of FA, it is the
functor N : Probop → Forest mapping each problem P to the forest consisting of
(countably) infinitely many infinite linear trees. More precisely, the set of nodes at
each level is the set N of natural numbers, and the parent function at each level is
the identity function on N.

The NNO is useful in providing recursive definitions, in the internal logic of FA, of
morphisms and objects of interest, as described in [1]. It also allows for the definition
of many sets and structures that are found in everyday mathematics. For example,
there is an object Q representing the rational numbers; elements of this object will
be used below to express discrete probabilities in the definition of stochastic search
strategies.

4 Local set theory
Any topos can be seen as a model of some local set theory (LST). In LST, the notion
of set is replaced by that of type. In the language of LST each term (including
those representing sets) has an associated type. The “local” in LST means that some
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common set-theoretical operations, such as union, intersection etc., are only defined
for terms of the same type (i.e., locally). Apart from that, the language is very similar
to that of set theory, with primitive symbols =, ∈ and { | }. The language of LST is
defined below. In [1, pp. 91ff], it is shown how a local language can be interpreted in
an arbitrary topos.

Definition 4.1 (Local language)
A local language L is determined by the following components:

• Symbols: the unit symbol 1, the truth-value type symbol Ω, a collection of ground
type symbols A,B,C, . . ., and a collection of function symbols f ,g,h, . . .;
• Types: the set of types of L is the least set T containing 1,Ω, all ground type

symbols A,B,C, . . . and closed under the following operations:
– For A ∈ T , the power type PA is also in T ;
– For A1, . . . ,An ∈ T , the product type A1 × · · · ×An is also in T (for n = 0,

the product type is 1).
• Signatures: Each function symbol f is associated to a signature A→ B, where A

and B are types. This is denoted by f : A→ B;
• Variables: For each type A there is a countable set of variables VA;
• Terms: For each type A, there is a set TA of terms of type A, defined as follows:

– ? ∈ T1;
– VA ⊆ TA;
– For f : A→ B and τ ∈ TA, we have that f(τ) ∈ TB;
– For τi ∈ TAi

(i = 1, . . . , n), we have that (τ1, . . . , τn) ∈ TA1×···×An . For n = 0,
this term is ?;

– For τ ∈ TA1×···×An , we have that πi(τ) ∈ TAi (with i = 1, . . . , n);
– For ϕ ∈ TΩ and x ∈ VA, we have that {x | ϕ} ∈ TPA;
– For terms σ and τ of type A, we have that σ = τ is a term in TΩ;
– For terms σ and τ of types A and PA, respectively, we have that σ ∈ τ is a

term in TΩ.

Terms of type Ω are called formulae. Free and bound occurrences of variables are
defined in the usual fashion. Logical operators are defined as abbreviations, as shown
in [1, p. 70]. For example, > is defined as ? = ?; given formulae ϕ,ψ, we have that
ϕ ∧ ψ is defined as (ϕ,ψ) = (>,>), and ϕ ⇒ ψ is defined as (ϕ ∧ ψ) = ϕ. For an
example involving a quantifier: given a variable x of the appropriate type, ∀x : ϕ is
defined as an abbreviation of {x | ϕ} = {x | >}.

Some terms in a local language will represent sets:

Definition 4.2 (Set-terms)
A set-term is any term of power type PA for some type A.

Set-theoretical definitions are listed in [1, pp. 83ff]. Some of them are:

• X ⊆ Y is defined as ∀x : (x ∈ X ⇒ x ∈ Y );
• X ∩ Y is defined as {x | x ∈ X ∧ x ∈ Y }, of the same type as X and Y ;
• X ∪ Y is defined as {x | x ∈ X ∨ x ∈ Y }, of the same type as X and Y ;
• A is defined as {x | >}, of type PA, with x a variable of type A. In other words,

for every type symbol A, there is a corresponding set-term A;
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• ∅A, or simply ∅, is defined as {x | ⊥}, of type PA, with x a variable of type A;
• PX is defined as {x | x ⊆ X}, of type PPX, with x a variable of type PX;
• {τ | ϕ} is defined as {x | ∃x1 : · · · : ∃xn : (x = τ ∧ ϕ)}, with x a variable of the

same type as the term τ ;
• X × Y is defined as {(x, y) | x ∈ X ∧ y ∈ Y }, of type P(X×Y). Note that X

and Y may be of different types;
• Y X is defined as {z | z ⊆ X × Y ∧ ∀x ∈ X : ∃!y ∈ Y : (x, y) ∈ z}, of type

PP(X×Y). [1, pp. 85ff] shows that to each function symbol f : A → B of L,
there corresponds the set-term {(a, f(a)) | a ∈ A}, of type BA. When the language
is interpreted in a topos, this means that each morphism A

f−→ B is associated
to a set-term f of type BA, allowing us to represent morphisms as functions in
classical set theory: as sets of ordered pairs;
•

∐
i∈I Xi is defined as {(i, x) | i ∈ I ∧ x ∈ Xi} of type P(B×A), with I of type B

and with Xi a term of type PA which may or may not contain free occurrences
of variable i.

In [1, pp. 91ff], it is explained in detail how a local language can be interpreted in
an arbitrary topos.

5 Stochastic Search Strategies in LST
Given a forest F , we will represent the behavior of a stochastic search strategy by
a sequence (Si)i∈N where each Si is a set of triples of the form 〈T, v, q〉, with T a
subforest4 of F corresponding to the forest formed by all nodes visited up to step
i, with v the node last visited, and with q a probability. The sequence (Si)i∈N is
determined by the set S0 and by a function step from the set of all such sets of triples
to itself such that step(Si) = Si+1 for all i > 0. The sequence (Si)i∈N must be such
that the set S0 contains only triples where T is a single-node subforest of F and where
v is that single node. This means that S0 is actually a collection of possible initial
nodes of the search, each node accompanied by a probability. Moreover, for each
triple 〈T ′, v′, q′〉 in Si+1 there must exist some triple 〈T, v, q〉 in Si such that either
T = T ′, meaning that no new node is visited at step i+1, or T ′ is an extension of T by
exactly the one node v′. Finally, obvious conditions on the values of the probabilities
must also hold.

In order to describe search strategies in the logic of FA, we must consider pairs of
the form 〈F, λ〉 and 〈T, θ〉 instead of forests F and subforests T . Furthermore, given
〈F, λ〉 and 〈F ′, λ′〉, we have that a morphism 〈F, λ〉 α−→ 〈F ′, λ′〉 can only be considered
if α preserves the labels of F . This is expressed by the predicate5

isLabelPreserving(α, F, λ, F ′, λ′) ⇐⇒ ∀x ∈ F : λ(x) = λ′(α(x))

Then, 〈H,κ〉 is a subobject of 〈F, λ〉 iff the following predicate is satisfied (where

4Here and in what follows, by a “subforest of F ” we mean a forest that can be embedded in the forest F by a
forest homomorphism. The roots of the subforest must be at the same level as the roots of the forest.

5As seen in Sect. 4, the language of LST is typed; here, in order to unclutter the notation, we omit typing
information about all terms whose type can be apprehended from the context.
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isMonic(α) is satisfied iff α is a monomorphism — see [1]):

isSubObject(H,κ, F, λ) ⇐⇒
∃α ∈ FH : (isMonic(α) ∧ isLabelPreserving(α,H, κ, F, λ))

From now on, in order to make the formulae more readable, the labeling morphisms
(e.g., λ, κ, etc.) and the condition that a morphism α must be label-preserving will
be omitted, except where they must be explicitly mentioned. So, labeled forests and
subforests will simply be denoted by F , H, T , etc.

The set of all subforests of a given labeled forest F will be denoted PF .
As was mentioned in Sect. 3.1, a node H of a labeled forest F is identified with the

finite path from the root to the node. In other words, a node H is a nonempty, finite,
linear subobject of the forest. Nonemptiness corresponds to H being different from
the initial object ∅; finiteness corresponds to the unique morphism 1H from H to 1
not being epic (where 1 is the terminal object of AFA: a linear tree with infinitely
many nodes); linearity corresponds to 1H being monic:

isNode(H,κ, F, λ) ⇐⇒
isSubObject(H,κ, F, λ) ∧ H 6= ∅F ∧ isMonic(1H) ∧ ¬isEpic(1H)

Recall that L is the codomain of the morphisms responsible for the labeling of
nodes. Then the set of all nodes of a labeled forest 〈F, λ〉 is represented by the
following set-term, which we will abbreviate by nodes(F, λ):

nodes(F, λ) =
{
〈H,κ〉 ∈

∐
H∈PF L

H
∣∣ isNode(H,κ, F, λ)

}
Again, we will omit labeling morphisms and write nodes(F ). Clearly, we have that
nodes(F ) ⊆ PF .

A root of a labeled forest F is an element of nodes(F ) that is minimal with respect
to the partial order “is a subobject of”:

isRoot(H,F ) ⇐⇒
H ∈ nodes(F ) ∧
∀H ′ ∈ nodes(F ) : (isSubObject(H ′,H) ⇒ H ′ = H)

The fact that a labeled forest F extends another forest F ′ by exactly one node is
represented by the following predicate:

extendsByOne(F, F ′) ⇐⇒
isSubObject(F ′, F ) ∧ ∃!H ∈ nodes(F ) : H 6∈ nodes(F ′)

And the following predicate states that the node given by H is the one that was
added to F ′ to yield F :

wasAdded(H,F, F ′) ⇐⇒
extendsByOne(F, F ′) ∧ H ∈ nodes(F ) ∧ H 6∈ nodes(F ′)

In our definition of stochastic search strategies, we want to consider only finite,
nonempty sets of triples of the form 〈T,H, q〉 such that the sum of all probabilities q
equals 1. To this end, let C be the set

C =
( ∐

T∈PF nodes(T ) × {q ∈ Q | 0 < q ≤ 1}
)



Using the Internal Logic of a Topos to Model Search Spaces for Problems 13

where Q is the object of rational numbers. The elements of C are triples of the form
〈T,H, q〉 with q a probability. Now define S to be the set

S =
{
X ∈ PC

∣∣ X 6= ∅, X finite,
∑

(x,y,q)∈X q = 1
}

The functor R : Probop → Forest maps each problem P = 〈D,R, p〉 to a specific
forest representing the set R of answers of P . In specifying a search strategy, we must
define how answers are to be returned; to this end, define the set A as

A =
{
X ∈ P ( R× {q ∈ Q | 0 < q ≤ 1} )

∣∣ X finite,
∑

(x,q)∈X q = 1
}

Then a morphism answer : N → A from the natural number object N determines the
answers returned by the strategy if the search terminates at the nth iteration. Note
that each answer r is accompanied by a probability value q.

Now we may give a definition of a stochastic search strategy in LST:

Definition 5.1 (Stochastic search strategy)
A stochastic search strategy over a forest F is represented by a term 〈init , step, answer〉
with init a term of type S, step a term of type SS and answer a term of type AN

satisfying the following predicate:

isStochasticSearchStrategy(init , step, answer , F ) ⇐⇒
∀〈T,H, q〉 ∈ init : (T = H ∧ isRoot(H,F )) ∧
∀X,Y ∈ S : (step(X) = Y ⇒
∀〈T,H, q〉 ∈ Y : ∃〈T ′,H ′, q′〉 ∈ X :

(T = T ′ ∨ (extendsByOne(T, T ′) ∧ wasAdded(H,T, T ′)))
)

6 Examples
To illustrate the capabilities of the model, we will specify some search strategies in
the language of LST. First, however, we define two additional useful terms.

Many heuristics are search strategies where the nodes of the search space are eval-
uated according to some heuristic function. In our language, a heuristic function to
evaluate the nodes of a given labeled forest F can be defined as a term h of type
Nnodes(F ), where N is the natural number object. In other words, the “grade” a node
receives upon evaluation is a natural number. We assume that the lower the grade,
the better the evaluation.

For every stochastic search strategy 〈init , step, answer〉 we may define by simple
recursion (see [1]) a term stage of type SN, where N is the natural number object.
The idea is that, given any natural number n, the term stage(n) will be equivalent to
step(step(· · · step(init) · · · )), with n applications of step.

6.1 Greedy Search
In a simple greedy search strategy, the node visited at each stage after the first is the
best child of the node visited in the previous stage, as long as the best child has a
better (or equal) evaluation than the node visited in the previous stage. Nothing is
assumed about the initial node.
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isGreedy(init , step, answer , F, h) ⇐⇒
1 isStochasticSearchStrategy(init , step, answer , F ) ∧
2 ∀T, T ′,H,H ′ : (
3 step(T,H) = (T ′,H ′) ⇐⇒ (
4 H ′ = H ∧ ∀K ∈ children(H,F ) : h(K) > h(H)
5 ∨
6 h(H ′) ≤ h(H) ∧ ∀H ′′ ∈ children(H,F ) : h(H ′) ≤ h(H ′′)
7 )
8 )

Fig. 4. Specification of greedy search in LST

As simple greedy search is deterministic rather than stochastic, for each n the set
stage(n) is a singleton. To simplify the formulae, for all n we consider stage(n) to
be a pair of the form 〈T,H〉, with T representing the labeled forest (a tree, actually)
formed by the nodes visited so far and H the last node visited.

A search strategy 〈init , step, answer〉 is considered greedy if it satisfies the predicate
in Fig. 4 for some interpretation of h (the heuristic function). There, children(H) is
a term denoting the set of children6 of node H in forest F . Line 4 specifies that the
search terminates (i.e., the current node is revisited indefinitely) when the current
node H has no better children. Line 6 says that otherwise the next node to be visited
is the best child of the current node.

6.2 Simulated annealing
Simulated annealing [6] is a metaheuristic strategy frequently used to solve combina-
tory optimization problems. At each stage, a child of the current node is chosen at
random; the chosen child may be visited with a probability that depends both on the
difference between the grade of the current node and the grade of the chosen child
(∆E) and on the value of a parameter T , which, by analogy with a physical process, is
called “temperature”. At each stage n, the value of T is given by a function sched(n).
The idea is to define this function in such a way that it will occasionally happen that
a child that is worse than its parent is visited, so as to escape local optima.

A stochastic search strategy 〈init , step, answer〉 is an example of simulated anneal-
ing over a forest F , using heuristic function h and cooling schedule sched , precisely
when it satisfies the predicate in Fig. 5.

Line 2 states that sched is a nonincreasing function (sn represents the successor of
n); line 5 establishes the termination criterion: when sched(n) becomes 0, the strategy
makes no more progress; line 6 describes one iteration, using the terms defined in
Fig. 6:7

In pNoAdvance (a term denoting the probability that no child of the current node is
visited) and pVisit (a term denoting the probability that a given child of the current
node is visited), e represents a rational approximation of the real constant e.

6A node H′ is a child of a node H iff extendsByOne(H′, H) is satisfied.
7Not all set-theoretical terms and operations used here (e.g. definition by cases) have had their definitions

included in this paper. See [3] for details.
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isSimAnn(init , step, answer , F, h, sched) ⇐⇒
1 isStochasticSearchStrategy(init , step, answer , F ) ∧
2 ∀n : sched(sn) ≤ sched(n) ∧
3 ∀X,Y, n : (
4 X = stage(n) ∧ Y = stage(sn) ⇒ (
5 (sched(n) = 0 ⇐⇒ X = Y ) ∧
6 (sched(n) > 0 ⇐⇒ Y = gatherTriples(expandSet(X)))
7 )
8 )

Fig. 5. Specification of simulated annealing in LST

expandSet(X) = { expandTriple(〈T,H, q〉) | 〈T,H, q〉 ∈ X }
expandTriple(〈T,H, q〉) = { 〈T,H, q · pNoAdvance(H, sched(n))〉 } ∪⋃

H′∈children(H)

{ 〈T ′,H ′, q · pVisit(H ′,H, sched(n))〉 | wasAdded(H ′, T, T ′) }

gatherTriples(Z) = { 〈T,H, s〉 | ∃z ∈ Z : 〈T,H, q〉 ∈ z ∧ s =
∑
z∈Z

〈T,H,q〉∈Z

q }

pNoAdvance(H, t) =
|worseChildren(H)| −

P
H′∈worseChildren(H) e(h(H)−h(H′))/t

|children(H)|

worseChildren(H) = { H ′ ∈ children(H) | h(H ′) > h(H) }

pVisit(H ′,H, t) =
{
e(h(H)−h(H′))/t / children(H) if h(H ′) > h(H)
1 / children(H) if h(H ′) ≤ h(H)

Fig. 6. Terms used in the specification of simulated annealing

7 Verifying Properties of Search Strategies
By using the sound and complete sequent calculus for Local Set Theory defined in [1],
one can prove properties of the search strategies specified in our model. We offer below
some brief comments on examples of provable formulae involving greedy search and
simulated annealing. The properties are quite simple and intuitive, and are included
here only for illustrative purposes. The proofs themselves are not presented, and
although a bit lengthy, can be easily constructed.

The provable formula that says that simple greedy search is deterministic asserts
that each set stage(n) is a singleton:

∀init , step, answer , F, h : isGreedy(init , step, answer , F, h) ⇒
∀n : ∃!〈T,H〉 : 〈T,H, 1〉 ∈ stage(n)

Furthermore, simple greedy search never backtracks. Equivalently, at each itera-
tion, the subforest consisting of all nodes visited by the search is actually a linear
tree. This is expressed by the provable formula (recall that a node is identified with
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a path from the root to the node; i.e., a finite linear tree)

∀init , step, answer , F, h : isGreedy(init , step, answer , F, h) ⇒
∀n : ∀〈T,H, q〉 ∈ stage(n) : isNode(T )

Actually, an analogous formula for simulated annealing is also provable.
Although not shown in the paper, one can use the logic to specify properties of

the instance d of the problem P = 〈D,R, p〉 being solved and of the search forest
F assigned to it. Once this is done, one can compare the performances of simple
greedy search and simulated annealing in solving the problem in question. For ex-
ample, the following formula states that (for the given problem P and in the given
search forest F , using a single heuristic function h) the simple greedy search strategy
〈init , step, answer〉 (with associated function stage) fails in finding a correct answer,
whereas the simulated annealing strategy 〈init ′, step′, answer ′〉 (with associated func-
tion stage ′) has a better than 50% chance of succeeding:

∀n : ((stage(sn) = stage(n) ⇒ ∀r : (〈r, 1〉 ∈ answer(n)⇒ ¬correct(r)))
∧ (stage ′(sn) = stage ′(n) ⇒
∃r∃q : (〈r, q〉 ∈ answer ′(n) ∧ correct ′(r) ∧ q ≥ 1/2))

)

Alternatively, the model of the problem P and the search forest F could be de-
fined outside our logical language, and verification of the above formula be conducted
through a model-checking procedure.

The implementation of theorem-proving and model-checking techniques for local
set theory is work in progress. As soon as this is completed, we will be able to present
examples of the verification of more complex, real-life properties of search spaces and
search strategies.

8 Conclusion

8.1 Related work
Models, classifications and taxonomies of heuristic techniques have appeared in the
literature since the 70’s. An example of a well-founded formal approach is the work
presented in [9], which seeks to define a grand unifying model for heuristic search,
branch-and-bound algorithms and dynamic programming.

More recently, there has been great interest in formal models for search strategies
motivated by the need to define and implement software frameworks and object-
oriented algorithms for optimization problems, as discussed in [4] and [15]. The
models defined in this kind of work are usually in the form of class or component
libraries in object-oriented languages or in the form of new modeling languages (or
search-oriented extensions of existing languages) like that in [13], possibly coupled
with automatic problem solvers.

Our use of category- and topos-theoretical tools and techniques to build frameworks
for problems and (meta)heuristics is, to the best of our knowledge, unprecedented.
In [2], different categories of problems and reductions (“questions and answers”) are
examined, and — somewhat surprisingly — found to be present in subjects as diverse
as linear logic and cardinal characteristics of the continuum. Our category Prob of
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problems is a minor variation of one of these categories of questions and answers. A
deeper study of Prob and related categories is beyond the scope of this article, but
can be found in [3].

In [10], categories of optimization problems and reductions are defined, and ap-
proximation algorithms are examined from a categorical perspective, but no topos-
theoretical considerations are made, and the approach is not logic-based.

The Formal Methods community has long been using higher-order logics (HOL) as a
framework in which to specify software systems and to reason about their properties.
As LST is a higher-order language, the framework presented in this article could
be faithfully represented in HOL (with a suitable definition of the type of rational
numbers), with no mention of categories or topoi. However, if we had chosen the HOL
approach, we would soon be confronted with questions about the existence of models
of our specifications and about the nature of these models. By taking the FA topos
as our starting point, we are formally defining our models and then eliciting the very
theory of these models. It seems to us that (1) using HOL specifications and their
models and (2) using the theory of our topos in the language of LST are different ways
of achieving the same goal, with (2) apparently showing the advantage of having a
precisely defined model as a starting point. Furthermore, from a foundational point
of view our approach is preferable inasmuch as it does not allow the use of reasoning
external to the models we are interested in.

8.2 Further work
We believe our most important achievements so far have been the successful use of
topos-theoretical tools to define our model and the generation of examples to provide
evidence to the effect that the model is comprehensive enough to represent the tech-
niques used by practitioners. In fact, [3] discusses further examples of specifications
of (meta)heuristics, including the well-known paradigm of Genetic Algorithms.

In our view, (meta)heuristics are built from search spaces and search strategies.
The former are represented by functors, and the latter are represented by natural
transformations. In a strong sense, we may say that this view provides a complete
model. Furthermore, this model is made formal by means of adequate manipulations
on the respective local set theories, yielding means of proving properties, besides
correctness, of any conceivable strategy. This goes beyond modeling languages like
the one presented in [13] (which usually consist of formalisms whose main purpose
is the expression of algorithms) in the sense that our formal model also supports
property-checking.

We envisage some applications of the present work: (1) Logical specifications can
be used to check the correctness of more concrete representations of (meta)heuristics,
possibly even in the form of code in a programming language or in a modeling lan-
guage like that presented in [13]. To this end, the study and implementation of
theorem-proving and/or model-checking techniques for local set theory would cer-
tainly lead to interesting and useful results; (2) the language of our model can be
used to define a high-level software framework, which would be refined through the
use of techniques of code transformation to generate modules in some programming
language; these generated modules would then be combined with a fixed library of
supporting modules, written in the programming language, to generate complete im-
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plementations of (meta)heuristics, profiting from the code reuse advantages offered
by software frameworks.
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