A Real-Time Specification Language

Fernando Naufel do Amaral, Edward Hermann Haeusler, Markus Endler
Dept. of Informatics, PUC-RJ,Brazil
{fnaufel, hermann, endler}@inf.puc-rio.br

Abstract. A specification language for real-time software systems is presented. No-
tions from Category Theory are used to specify how the components of a system
should interact. The potential role of the proposed language in the search for inter-
operability of specification formalisms is briefly discussed.

1 Introduction

The aim of this work is to present RT-Community, a specification language for real-time
reactive systems. Using the language, one is able to specify the computations of the individual
components of a real-time system as well as the way these components interact with each
other. This makes RT-Community suitable as an architecture description language (ADL) in
the sense of [1].

RT-Community is an extension of the specification language Community ([7]), from
which it inherits its characteristics as a coordination language ([4]). Roughly speaking, this
means that it supports the separation between computational concerns (what each component
does) and coordination concerns (how components are put together and how they interact to
present the behavior expected of the system as a whole).

This paper presents the syntax and informal semantics of RT-Community in section 2 (a
formal model-theoric semantics, not included here for lack of space, is found in [2]). Section 3
shows how composition is done in RT-Community by way of some basic notions of Category
Theory. Finally, section 4 offers some concluding remarks, especially about the potential role
of RT-Community in the search for interoperability of specification formalisms.

2 RT-Community
An RT-Community component has the form shown in Figure 1, where

e Vis a finite set of variables, partitioned into input variables, output variables and private
variables. Input variables are read by the component from its environment; they cannot be
modified by the component. Output variables can be modified by the component and read
by the environment; they cannot be modified by the environment. Private variables can
be modified by the component and cannot be seen (i.e. neither read nor modified) by the
environment. We write loc(V') for pro(V') U out(V'). We assume given but do not make
explicit the specification of the data types over which the variables in V' range.

Fernando Naufel do Amaral, Edward Hermann Haeusler, Markus Endler

component P

in in (V)

out out (V)

prv prv (V)

clocks C

init F

do
g'c sh(T) 9:[1(9),Blg) — R(g), lleng v:=F(g,)
g€ proT) prv g:[T(9),Bla) — R(9). lhenty v=Flg.)

end component

Figure 1: The form of an RT-Community component

C is a finite set of clocks. Clocks are like private variables in that they cannot be seen by
the environment; they can be consulted (i.e. their current values may be read) by the com-
ponent; however, the only way a component can modify a clock variable is by resetting it
to zero.

F is a formula specifying the initial state of the component (i.e., conditions on the initial
values of variables in loc(V)). The initial values of input variables are unconstrained, and
clocks are always initialized to zero.

I" is a finite set of action names. Actions may be either shared or private. Shared actions
are available for synchronization with actions of other components, whereas the execution
of private actions is entirely under control of the component.

The body of the component consists of a set of instructions resembling guarded com-
mands. For each action g € T', we have the time guard T'(g), which is a boolean expres-
sion over atomic formulae of the formz ~ nand z—y ~ n,wherez,y € C,n € Ry, and
~ is one of {<, >, =}, the data guard B(g), which is a boolean expression constructed
from the operations and predicates present in the specification of the data types of V; the
reset clocks R(g) C C, containing the clocks to be reset upon execution of g; and the
parallel assignment of a term F'(g, v) to each variable v that can be modified by g. We
denote by D(g) the set of variables that can be modified by g. This set will be called the
write frame (or domain) of g.

The execution of a component proceeds as follows: at each step, an action whose time

and data guards are true (such an action is said to be enabled) may be executed. If more than
one enabled action exists, one may be selected non-deterministically. If an action is selected,
the corresponding assignments are effected and the specified clocks are reset. If no action
is selected, time passes, the component idles and all clocks are updated accordingly (i.e.,
the semantics is based on global time). However, three conditions must be met: (1) a private
action may not be enabled infinitely often without being infinitely often selected (the fairness
condition), (2) time may not pass if there is an enabled private action (the urgency condition),
and (3) a shared action may not be disabled solely by the passage of time (the persistency
condition).

A model-theoretic semantics of RT-Community based on Time-Labelled Transition Sys-

tems can be found in [2].

A Real-Time Specification Language 3

component snooze

in float initialInterval, float minimum
out bool ringing
prv float interval
clocks C
init =ringing A interval = —1
do
[] firstRing: — ringing :=true || interval := initialInterval
[] snooze: ringing A interval > minimum —
reset(c) || ringing := false || interval := interval /2
[] off: ringing — ringing := false || interval := —1
[] prv timeout: ¢ == interval — ringing := true

end component

Figure 2: The snooze component

2.1 A Simple Example

We present a component for the “snooze” feature of an alarm clock. Component snooze is
activated when the timekeeping component of the alarm clock (not shown) reaches the preset
time, as indicated by action firstRing. This action sets the output variable ringing to true, a
change that may be detected by a “bell” component (not shown either). If the user presses the
“off” button at this point, the alarm and the snooze component are turned off, as indicated
by the off action. However, if the user presses the “snooze” button (action snooze), the alarm
stops ringing, only to ring again after a preset time interval. This second ringing of the alarm
Is activated by the snooze component upon detecting the timeout (private action timeout).
Now, if the user presses the “snooze” button this time, he will be allowed to sleep for an
additional period with half the duration of the initial interval. This pattern repeats, with the
interval being halved each time the alarm rings and the user presses the “snooze” button, until
either the user presses the “off” button or the interval reaches a certain minimum duration (in
this last case, the alarm will go on ringing until the user presses the “off” button).

The duration of the initial interval and the minimum duration are provided by the environ-
ment of the snooze component, as indicated by input variables initiallnterval and minimum.
The specification of the snooze component is given in Figure 2. There, time guards and data
guards that have the constant truth value true are omitted, and the resetting of a clock c is
indicated by the reset(c) instruction.

3 Composing RT-Community Components

We use basic concepts from Category Theory ([6, 10]) to define how composition is done in
RT-Community. The use of Category Theory allows us to describe the interaction of compo-
nents in an abstract fashion, thus establishing the essentials of their coordination in such a
way that RT-Community components may be replaced by specifications in other formalisms
(e.g. a temporal logic with time-bounded operators such as MTL — see [3]), a desirable feature
when our ultimate goal is to promote the interoperability of formalisms.

4 Fernando Naufel do Amaral, Edward Hermann Haeusler, Markus Endler

3.1 The Categories of Signatures and Components

Formally, an RT-Community component is a pair (X, A) with ¥ the signature and A the body
of the component.

Definition 3.1 (Signature of a component). An RT-Community signature is a tuple ¥ =<
V,C,T,tv,ta, D, R >, where V is a finite set of variables, C is a finite set of clocks, I is
a finite set of action names, tv : V. — {in, out, prv} is the typing function for variables,
ta : T — {shr,prv} is the typing function for action names, D : I' — 2!°<(V) is the write
frame function for action names, and R : I' — 2 is the reset clock function for action
names.

Definition 3.2 (Body of a component). The body of an RT-Community component with sig-
nature X isatuple A =< T, B,F,I >, withT : I' — PROP(C) the time guard func-
tion for action names, B : ' — PROP(V) the data guard function for action names,
F:T — (loc(V) — TERM(V)) the assignment function for action names, and I a for-
mula over loc(V') specifying the initial state(s) of the component. Here, PROP(C) denotes
the set of boolean propositions over clocks, PROP (V') denotes the set of boolean proposi-
tions over variables and TERM(V) is the set of terms of the term algebra of the data types
involved. Function F' must respect sorts when assigning terms to variables.

We define the category of RT-Community signatures. In what follows, it is helpful to
keep in mind that X, is the signature of a component (referred to as “the component”) that is
embedded in a system (referred to as “the system”) whose signature is X,.

Definition 3.3 (Category of signatures). Sign is the category that has signatures of RT-
Community as objects; a morphism o : ¥; — 3, in Sign is a triple < o,, 0., 0, > defined
as follows:

o, : Vi — V4 is a total function such that

e Forall v € Vi, sorty(o,(v)) = sort;(v). Variables of the component are mapped to
variables of the system in such a way that sorts are preserved;

e Forall o,i,p € Vi, 0 € out(V1) = o,(0) € out(Va), i € in(Vi) = o0,(i) € in(Va) U
out(V3), p € prv(V1) = o,(p) € out(V3). The nature of each variable is preserved, with
the exception that input variables of the component may become output variables of the
system. This is because, as will be seen below, an input variable of a component may be
“connected” to an output variable of another component; when this happens, the resulting
variable must be considered an output variable of the system: its value can be modified
by the system, and it remains visible to the environment (which, however, cannot modify
it).

o. : C1 — (5 is a total, injective function from the clocks of the component to the
clocks of the system. In other words, all clocks of the component must retain their identity in
the system.

o, : 'y — T’y is a partial function from the actions of the system to the actions of
the component. o, is partial because an action of the system may or may not correspond
to an action of the component; i.e., if the component does not participate in a given action

A Real-Time Specification Language 5

g of the system, then o,(g) is undefined. Furthermore, note the contravariant nature of o,
compared to o, and o.: because each action of the system can involve at most one action of
the component, and each action of the component may participate in more than one action
of the system, the relation must be functional from the system to the component. Besides, o,
must satisfy the following conditions (D(v) for a variable v denotes the set of actions having
v in their domain):

e For all g € T’y for which o,(g) is defined, g € shr(l'y) = o.(9) € shr(I';) and
g € prv([y) = 04(g) € prv(I'y). An action of the system is of the same nature (shared
or private) as the component action involved in it.

e Forall g € Ty for which o,(g) is defined, and for all v € loc(V;), v € Di(0.(g9)) =
oy(v) € Dy(g9) and g € Dsy(0,(v)) = 04(g9) € Di(v). If a component variable is
modified by a component action, then the corresponding system variable is modified by
the corresponding system action. Besides, system actions where the component does not
participate cannot modify local variables of the component.

The following item states analogous conditions for clocks of the component:

e Forall g € Ty for which o,(g) is defined, and for all c € C4, ¢ € Ri(0,(9)) = o.(c) €
Ry(g) and g € Ry(0c(c)) = 0a(g) € Ri(c).

We define the category of RT-Community components, with whole components as objects
and special signature morphisms between them.

Definition 3.4 (Category of components). Comp is the category that has components of
RT-Community as objects; a morphism o : (X1, A1) — (35, Ay) in Comp is a signature
morphism ¢ : X1 — 33, satisfying the following conditions:

e For all actions g in I'; with 0,(g) defined, we have @ = By(g) — 6(Bi(0.(g))) and
® = Ty(g) — a(T1(04(g))), where & is a suitable axiomatization of the specification of
the data types involved, and & is the extension of o, to the language of terms and propo-
sitions. The behavior of the system (3,, A,) is such that an action g of the system cannot
disrespect the data and time guards of the corresponding action o,(g) of the component;
i.e., the system can only strengthen said guards.

e & = I, — (), with ® and & as above. The initial state of the component must be
implied by the initial state of the system.

e For all actions g in 'y with o,(g) defined, and for all local variables v in D1(o,(g)),
we have Fy(g)(oy(v)) = a(Fi(oa(g))(v)) , where, as before, & is the extension of o,
to the language of terms and propositions. Recall that 7' is the function that assigns to
each action g a mapping from the variables in the action’s domain D(g) to terms of the
term algebra of the data types involved. This means that an action ¢ of the system can
only assign to a local variable of the component the “translation” of the value that the
corresponding action o,(g) of the component does.

6 Fernando Naufel do Amaral, Edward Hermann Haeusler, Markus Endler

3.2 Channels and Configurations

The interaction of two components P; and P, may be either in the form of the connection
of variables or in the form of the synchronization of actions (or both). This interaction is
specified using a third component, called a channel. Given components P; and P, and a
channel P,, the composition of P; and P, via P, is represented by the diagram

p&pP =P

When certain conditions are met, such a diagram is called a configuration. In a configu-
ration, morphisms ¢, and o, specify how P, and P, should interact, as discussed below:

Variables: The only variables that the channel P, can contain are of the input kind, so
they can be mapped to input or output variables of P; and P,. Given an input variable v of
P,, we say that variables o, (v) and o2(v) of P; and P, respectively, are connected. If two
input variables are connected, the result will be an input variable of the composite system. If
an input variable and an output variable are connected, the result will be an output variable of
the composite system. We do not allow two output variables to be connected (a diagram where
this happens is not considered a well-formed configuration). Furthermore, private variables
and clocks cannot be connected, so we do not allow the channel P, to have private variables
or clocks.

Actions: The only actions that the channel P. can contain are of the shared kind. Fur-
thermore, these actions must be “empty” in the sense that their time and data guards are
the constant values true, they do not reset any clocks and do not modify any variables (i.e.
their write frame is empty). This means that the channel P, is a “neutral” component with no
behavior of its own, serving only as a kind of “wire” for joining the actions of P; and Ps.

Given an action g; of P, and an action g, of P, having o1(g1) = 02(g2) = g for g an
action of P., we say that g; and g, are synchronized. When two actions are synchronized, the
result will be a joint action of the composite system. This joint action will be of the shared
kind, its data and time guards being the conjunction of the corresponding guards of g, and gs,
its effect being to reset the union of the sets of clocks reset by ¢g; and g, and to perform the
assignments in the union of the sets of assignments dictated by g; and gs.

Formally, the system that results from the composition of P; and P, through channel P, is
the pushout (in the category Comp) of the configuration above, written P; +p, P;. In general,
for a configuration diagram involving any (finite) number of channels and components, the
resulting system is given by the colimit of the diagram. A configuration is said to be well-
formed when it satisfies the conditions described above. For well-formed configurations, the
colimit will always exist.

3.3 A Simple Example

In order to illustrate composition in RT-Community, we present the timekeeping component
of the alarm clock discussed in Section 2.1 and show how the timekeeping and snooze com-
ponents can be put together. The snooze component was shown in Figure 2. The timekeeping
component is shown in Figure 3. There, it is assumed that a data type Time is available, and
that adding 1 to a variable of this data type corresponds to adding one second to the time value
it contains. Besides, the fact that an action performs no assignments and resets no clocks (like
the ring action) is indicated by the abbreviation skip.

A Real-Time Specification Language 7

component timekeeping

in Time alarmTime, Time currentTime

out float snoozelnterval, float minimum

prv int ticksPerSec, Time now, boolean alarmOn

clock c

init snoozelnterval = 10 A minimum = 1 A ticksPerSec = ... A = alarmOn
do

[] setTime: — now := currentTime || reset(c)

[] setAlarm: — alarmOn := true

[] ring: alarmOn A now == alarmTime — skip

[] alarmOff: — alarmOn := false

[] prv keepTime: ¢ == ticksPerSec — now :=now + 1 || reset(c)
end component

Figure 3: The timekeeping component

When composing the timekeeping and snooze components, we want to identify variables
snoozelnterval and initialinterval, as well as variables minimum (in timekeeping) and mini-
mum (in snooze), so that the input variables in snooze will contain the constant values pro-
vided by timekeeping.

Furthermore, we want to synchronize actions ring and firstRing so that snooze will be
activated exactly when timekeeping detects that the current time equals the time the alarm
has been set to ring. We also want to synchronize the alarmOff and off actions, meaning that
when the user presses the “off” button, both the snooze and the alarm mechanisms are turned
off.

Notice that the resulting composite system is still open, in the sense that there are still
unconnected input variables: currentTime and alarmTime receive values given by the user
when he or she wants to set the time or the alarm, operations that are made available by the
shared actions setTime and setAlarm, respectively.

Further interaction with the environment is given by the following features:

e The snooze action of the snooze component remains as a shared action of the system; it
must be synchronized with an action of the environment representing the pressing of the
“snooze” button while the bell is ringing.

e The joint action (alarmOff | off) is a shared action of the system that must be synchronized
with an action of the environment representing the pressing of the “off” button while the
bell is ringing.

e The output variable ringing in the snooze component must be connected to an input vari-
able of a component representing the actual bell mechanism.

4 Concluding Remarks

RT-Community, like untimed Community, lends itself to the specification of architectural
connectors that express interaction of a more complex nature than in the examples presented
here. Other features of the language include the capacity for underspecification, such as lower

8 Fernando Naufel do Amaral, Edward Hermann Haeusler, Markus Endler

and upper bounds for action data guards (i.e., safety conditions and progress conditions, re-
spectively), and the partial specification of the effect of an action g on its write frame D(g),
by means of a boolean expression (involving primed variables, as is customary in other for-
malisms) instead of parallel assignment.

When specifying the components of a real-time system, it may be appropriate to use
formalisms of a higher level of abstraction than RT-Community. One example would be the
use of a real-time temporal logic (e.g. MTL — [3]) to specify the behavior of a component. In
fact, we expect that by using mappings between logics such as those described in [5], a wider
range of formalisms may be employed in the specification of a single system, allowing for a
situation of interoperability among logics and specification languages.

The adaptation of RT-Community to systems involving mobility and dynamic reconfigu-
ration is the subject of current study. A similar goal is being pursued in relation to untimed
Community ([9]), where graph rewriting is used to reflect runtime changes in the system.
We are investigating an alternative approach, where channels may be passed between com-
ponents to allow them to engage in new connections at execution time — a strategy similar to
the one used in m-calculus ([8]).

RT-Community is currently being contemplated for the specification of hypermedia pre-
sentations, a domain where real-time constraints occur naturally.

References
[1] R. Allen and D. Garlan, A Formal Basis for Architectural Connectors, ACM TOSEM, 6(3)(1997) 213-
249.

[2] F.N. Amaral and E.H. Haeusler, A Real-Time Specification Language, Technical Report, Dept. of Infor-
matics, PUC-RJ, Brazil (2002).

[3] E.Chang, Compositional Verification of Reactive and Real-Time Systems, PhD Thesis, Stanford Univer-
sity (1995).

[4] D. Gelernter and N. Carriero, Coordination Languages and their Significance, Comm. ACM 35, 2 (1992)
97-107.

[5] A. Martini, U. Wolter and E.H. Haeusler, Reasons and Ways to Cope with a Spectrum of Logics, in J.
Abe and J.I. da S. Filho (eds.), Logic, Artificial Intelligence and Robotics (proc. LAPTEC 2001), series:
Frontiers in Artificial Intelligence and Applications 71, 10S Press, Amsterdam (2001) 148-155.

[6] B. Peirce, Basic Category Theory for Computer Scientists, The MIT Press (1991).

[7] J.L. Fiadeiro and A. Lopes, Semantics of Architectural Connectors, in M. Bidoit and M. Dauchet (eds),
TAPSOFT’97, LNCS 1214, Springer-Verlag (1997) 505-519.

[8] R. Milner, Communicating and Mobile Systems: the 7-Calculus, Cambridge University Press (1999).

[91 M. Wermelinger and J.L. Fiadeiro, Algebraic Software Architecture Reconfiguration, in Software
Engineering—ESEC/FSE’99, volume 1687 of LNCS, Springer-Verlag (1999) 393-4009.

[10] G. Winskell and M. Nielsen, Categories in Concurrency, in A.M. Pitts and P. Dybjer (eds.), Semantics
and Logics of Computation, Cambridge University Press (1997) 299-354.

