
Topos-Based Logical Frameworks
and an Application to (Meta)Heuristic Search

Fernando Náufel do Amaral1,2 , Edward Hermann Haeusler1

1 TecMF, Depto. de Informática, PUC-Rio, Brazil

2Depto. de Informática e Ciência da Computação, IME, UERJ, Brazil

{fnaufel,hermann}@inf.puc-rio.br, fnaufel@ime.uerj.br

Abstract. We define some topoi related to the topos of forests and illustrate how
the internal language of such topoi can be used (via local set theory) to de-
fine logics where we can represent (meta)heuristic search strategies for solving
computational problems.

1. Introduction
Higher-order languages have been frequently used as logical frameworks. From a logical
point of view, one of the most interesting developments of topos theory [Goldblatt 1979]
has been the investigation of the internal logics of topoi by means of local set theory
(henceforth LST) [Bell 1988]. This is accomplished by viewing any topos as a model of
a theory in the higher-order language of LST.

We develop a topos-based formal model for (meta)heuristics general enough to
encompass the many (sometimes informal) definitions found in the literature. Among
such definitions, we may quote, for example: “Heuristics are criteria, methods, or prin-
ciples for deciding which among several alternative courses of action promises to be the
most effective in order to achieve some goal” [Pearl 1985]. According to [Voss 2001], a
metaheuristic is “an iterative master process that guides and modifies the operations of
subordinate heuristics to efficiently produce high-quality solutions.”

In a more abstract, unified view, both heuristics and metaheuristics are techniques
for solving a given problem by first defining some kind of “space” inhabited by candidate
answers (which are related by some structure imposed by the definition of such a space)
and then defining a strategy for moving in the defined space in search of an appropriate
answer. These two aspects — the search space and the search strategy — are the basis for
our formal definition of (meta)heuristics.

The main advantage of using LST to construct a model of (meta)heuristics is the
fact that, once we define an appropriate topos relating problems and search spaces, we
immediately have at our disposal a logical theory whose model is the defined topos (and
which can be represented in the internal language of the topos). This eliminates questions
of expressiveness, consistency and completeness which would fall upon us if we were to
construct our logical theory otherwise. In other words, the greatest benefit of LST is that
the model (i.e., the defined topos) comes equipped with a logical language and theory of
its own. In this sense, topoi and their internal languages function as logical frameworks.

One possible application of the present work lies in the logic-based development
of software architectures for the implementation of (meta)heuristic search strategies. We

envision a framework (in the software engineering sense) where logical specifications
of such strategies can be constructed and refined in order to generate executable code,
possibly to be combined with predefined, domain-specific libraries. Thus, some heuristic
concepts can be seen as images of the structure of the functor classifying them in the
space of (possible and viable) heuristics. This is a step toward an architectural view of
heuristics design.

2. Defining the Topos

We assume the reader is familiar with basic categorical and topos-theoretical notions such
as objects, morphisms, (contravariant) functors, natural transformations etc. A compre-
hensive reference on the subject is [Goldblatt 1979].

Definition 2.1 (Problems). A problem is a triple P = 〈D, R, p〉, with D and R countable,
nonempty sets, and p ⊆ D×R a relation. Elements d ∈ D are called instances; elements
r ∈ R are answers; (d, r) ∈ p means that r is a correct answer for instance d.

Definition 2.2 (Reductions). Given P = 〈D, R, p〉 and P ′ = 〈D′, R′, p′〉, a reduction

P
(τ,σ)−−→ P ′ consists of a pair (τ, σ) of functions computable in polynomial time,1 with

τ : D → D′ and σ : R′ → R such that correct answers are preserved; more precisely,
for every d ∈ D and every r′ ∈ R′, we have that (τ(d), r′) ∈ p′ ⇒ (d, σ(r′)) ∈ p.

Definition 2.3 (The category Prob of problems). Prob is a designated thin, skeletal
category2 having as objects a set of problems and having as morphisms a set of reductions
between these problems.

The search spaces we will define for the problems in Prob are based on forests.
A convenient category-theoretical definition of forests and forest homomorphisms is the
following:

Definition 2.4 (Forests, forest homomorphisms). A forest S is a functor S : ωop → Set,
where ωop is the category 0 ← 1 ← 2 ← · · · . A homomorphism h from a forest S to a
forest S ′ is a natural transformation h : S

�−→ S ′.

To see how a functor S : ωop → Set defines a forest, one views S(0) as the set of
root vertices of the forest, S(1) as the set of vertices on the second level of the forest, and
so on. The functor S will map the morphism 0 ← 1 to the function parent1 : S(1) →
S(0), the morphism 1← 2 to the function parent2 : S(2)→ S(1) and so on.

Definition 2.5 (The category Forest). The category Forest of forests and forest homo-
morphisms is the functor category Setωop

.

A search space for a problem P = 〈D, R, p〉 will be an object FP of Forest,
enriched with some additional information about P . More specifically, we want to label
each vertex v of the forest FP with a set of answers of P (i.e., with a set λ(v) such that
λ(v) ⊆ R). This is done via a natural transformation to the contravariant functor defined
below.

1There are other possible choices for the computational properties of functions that may make up a
reduction (see [do Amaral 2004]).

2A thin category is one where, given any two objects a and b, there is at most one morphism from a to
b. A skeletal category is one where object isomorphism coincides with object equality.

Definition 2.6 (The L functor). L : Probop → Forest is the functor that maps a problem
P = 〈D, R, p〉 to the forest LP with infinitely many levels, whose set of vertices at level
0 is P(R) (the powerset of R), and whose set of vertices at level i, for i > 0, is P(R)i+1,
the set of all (i+1)-tuples whose components are sets of answers in R. As for morphisms,

L maps a reduction P
(τ,σ)−−→ P ′ to the forest homomorphism LP ′ L(τ,σ)−−−→ LP such that a

vertex (A′
1, . . . , A

′
i) at the ith level of LP ′ is mapped to the vertex (σ(A′

1), . . . , σ(A′
i)) at

the ith level of LP .

The labeling of vertices of FP with sets of answers of P is justified as follows:
(a) in population-based metaheuristics, each vertex in the search space corresponds to a
population, which is a set of answers; (b) in local search metaheuristics and transforma-
tion heuristics, each vertex corresponds to a single answer r, which can be seen as the
singleton {r}; and (c) in constructive heuristics, each vertex corresponds to a “partial”
answer, and moving from one vertex to another corresponds to adding “elements” to the
partial answer in order to build a complete answer. It can be shown that a partial answer
of this kind can be represented by a set A of answers, and the addition of “elements” to
an answer can be seen as the selection of a proper subset of A, in a process sometimes
called pruning.

Definition 2.7 (Answer forest assignment). An answer forest assignment is a pair 〈F, λ〉,
where F : Probop → Forest is a functor and λ : F

�−→ L is a natural transformation.

Take a problem P in Prob; to see how λP corresponds to a labeling of the vertices
of FP , note that a vertex v at the ith level of FP with λ(v) = (A1, . . . , Ai) is considered
to be labeled by the set Ai. The other components A1, . . . , Ai−i store the labels of the
ancestor vertices of v from the root down to the parent of v. Furthermore, because λ is a
natural transformation, the labeling of the forests assigned to different problems in Prob
is done consistently (i.e., naturally).

Proposition 2.1. The collection of all answer forest assignments is the collection of ob-
jects of the slice category (ForestProbop

) ↓ L, where ForestProbop

is the category of all
contravariant functors from Prob to Forest and L is the functor introduced in Def. 2.6.

Theorem 2.1. Let this category of answer forest assignments be called AFA. The cate-
gory AFA is a topos.

Proof (sketch). ForestProbop

is the functor category (Setωop

)Probop
, which, in turn, is

isomorphic to the functor category Setωop×Probop

, which is a presheaf topos. Therefore,
AFA is a slice category of a topos, and hence itself a topos (via the fundamental theorem
of topoi — see [Bell 1988]) .

Each object of AFA corresponds, thus, to an assignment of search spaces to the
problems in Prob. These assignments are related via the morphisms of AFA. Theo-
rem 2.1 is important because it allows us to describe these assignments and relationships
in the internal language of the topos AFA, using local set theory (LST).

Actually, Theorem 2.1 gives us two topoi, namely, ForestProbop

, whose objects
assign unlabeled forests to problems; and its slice topos AFA, whose objects assign la-
beled forests to problems. As always happens in such cases, the internal logic of the slice
topos AFA can be represented in the internal logic of the unsliced topos ForestProbop

[Bell 1988]. For technical reasons not explained here, it is more convenient to work within
the internal logic of the latter (unsliced) topos; so, in what follows, we will be using the
internal logic of ForestProbop

to manipulate objects and morphisms of AFA in order to
describe (meta)heuristic search strategies.

3. Representing Search Strategies

Any topos can be seen as a model of some local set theory (LST) in higher-order logic
(HOL). In LST, the notion of set is replaced by that of type. In the higher-order language
of LST each term (including those representing sets) has an associated type. The “local”
in LST means that some common set-theoretical operations, such as union, intersection
etc., are only defined for terms of the same type (i.e., locally). Apart from that, the
language is very similar to that of set theory, with primitive symbols =, ∈ and { | }. The
language of LST is defined in [Bell 1988, p. 68ff]. There, it is also shown how such a
language can be interpreted in an arbitrary topos.

As explained in Sec. 2, we presuppose a thin, skeletal category Prob. Due to
space limitations, we simplify our exposition here by considering Prob = •; i.e., the
domain of all our functors F : Probop → Forest will be a category formed by one
single problem.3 An interesting consequence is that Forest•

op

becomes the category
Forest itself. So, in what follows, we will be using the internal logic of the topos of
forests to specify (meta)heuristics for one single problem.

Like all slice topoi of topoi of the form SetC, the topos AFA has a natural number
object (NNO), which allows for the definition, in the theory of AFA, of many sets and
structures that are found in everyday mathematics [Bell 1988]. For example, there is an
object Q representing the rational numbers; elements of this object will be used below to
express discrete probabilities in the definition of stochastic search strategies.

Given a labeled forest F (i.e., an object of AFA), we will represent the behavior
of a stochastic search strategy by a sequence (Si)i∈N where each Si is a set of triples of the
form 〈T, v, q〉, with T a subforest4 of F consisting of all nodes visited up to step i, with
v the node last visited, and with q a probability. The sequence (Si)i∈N is determined by
the set S0 and by a function step from the set of all such sets of triples to itself such that
step(Si) = Si+1 for all i > 0. The sequence (Si)i∈N must be such that the set S0 contains
only triples where T is a single-node subforest of F , and where v is that single node. This
means that S0 is actually a collection of possible initial nodes of the search, each node
accompanied by a probability. Moreover, for each triple 〈T ′, v′, q′〉 in Si+1 there must
exist some triple 〈T, v, q〉 in Si such that either T = T ′, meaning that no new node is
visited at step i+1, or T ′ is an extension of T by exactly the one node v′. Finally, obvious
conditions on the values of the probabilities must also hold. All these considerations will
be made formal below.

Recall (from the end of Sec. 2) that we intend to describe objects of the slice

3A more thorough treatment, with Prob an arbitrary thin, skeletal category, is found in
[do Amaral 2004], which shows how a reduction between two problems is associated (in a contravariant
fashion) to a homomorphism between the search spaces assigned to the problems.

4Here and in what follows, by a “subforest of F ” we mean a subobject of F , i.e., a forest that can be
embedded in the forest F by a forest homomorphism. The roots of the subforest must be at the same level
as the roots of the forest.

topos AFA in the language of ForestProbop

; so, we must consider pairs of the form
〈F, λ〉 and 〈T, θ〉 (corresponding to labeled forests) instead of (unlabeled) forests F and
T . Furthermore, given 〈F, λ〉 and 〈F ′, λ′〉, we have that a morphism 〈F, λ〉 α−→ 〈F ′, λ′〉
can only be considered if α preserves the labels of F . This is expressed by the predicate5

isLabelPreserving(α, F, λ, F ′, λ′) ⇐⇒ ∀x ∈ F : λ(x) = λ′(α(x))

Then, 〈G, κ〉 is a subobject of 〈F, λ〉 iff the following predicate is satisfied (where
isMonic(α) is satisfied iff α is a monomorphism — see [Bell 1988]):

isSubObject(G, κ, F, λ) ⇐⇒
∃α ∈ FG : (isMonic(α) ∧ isLabelPreserving(α, G, κ, F, λ))

Sometimes, in order to make the formulae more readable, the labeling morphisms
(e.g., λ, κ, etc.) and the condition that a morphism α must be label-preserving will be
omitted, except where they must be explicitly mentioned. So, labeled forests and sub-
forests will simply be denoted by F , G, T , etc.

The set of all subforests of a given labeled forest F will be denoted PF .

A node G of a labeled forest F is identified with the finite path from the root to
the node. In other words, a node G is a nonempty, finite, linear subobject of the forest.
Nonemptiness corresponds to G being different from the initial object ∅; finiteness cor-
responds to the unique morphism 1G from G to 1 not being epic (where 1 is the terminal
object of ForestProbop

: a linear tree with infinitely many nodes); linearity corresponds to
1G being monic:

isNode(G, κ, F, λ) ⇐⇒
isSubObject(G, κ, F, λ) ∧ G 6= ∅F ∧ isMonic(1G) ∧ ¬isEpic(1G)

Recall that L is the codomain of the morphisms responsible for the labeling of
nodes (Sec. 2). Then the set of all nodes of a labeled forest 〈F, λ〉 is represented by the
following set-term, which we will abbreviate by nodes(F, λ):

nodes(F, λ) =
{
〈G, κ〉 ∈

∐
G∈PF LG

∣∣ isNode(G, κ, F, λ)
}

Again, we will omit labeling morphisms and write nodes(F). Clearly, we have that
nodes(F) ⊆ PF .

A root of a labeled forest F is an element of nodes(F) that is minimal with respect
to the partial order “is a subobject of”:

isRoot(G, F) ⇐⇒ G ∈ nodes(F) ∧ ¬∃G′ ∈ nodes(F) : isSubObject(G′, G)

The fact that a labeled forest F extends another forest F ′ by exactly one node is
represented by the following predicate:

extendsByOne(F, F ′) ⇐⇒
isSubObject(F ′, F) ∧ ∃!G ∈ nodes(F) : G 6∈ nodes(F ′)

5The language of LST is typed; here, in order to unclutter the notation, we omit typing information
about all terms whose type can be apprehended from the context.

And the following predicate states that the node given by G is the one that was
added to F ′ to yield F :

wasAdded(G, F, F ′) ⇐⇒
extendsByOne(F, F ′) ∧ G ∈ nodes(F) ∧ G 6∈ nodes(F ′)

In our definition of stochastic search strategies, we want to consider only finite,
nonempty sets of triples of the form 〈T,G, q〉 such that the sum of all probabilities q
equals 1. To this end, let C be the set

C =
(∐

T∈PF nodes(T) × {q ∈ Q | 0 < q ≤ 1}
)

where Q is the object of rational numbers. The elements of C are triples of the form
〈T, G, q〉 with q a probability. Now define S to be the set6

S =
{

X ∈ PC
∣∣ X 6= ∅, X finite,

∑
(x,y,q)∈X q = 1

}
Now we may give a definition of a stochastic search strategy in LST:

Definition 3.1 (Stochastic search strategy). A stochastic search strategy over a forest F
is represented by a term 〈init , step〉 with init a term of type S, and step a term of type SS

satisfying the following predicate:

isStochasticSearchStrategy(init , step, F) ⇐⇒
∀〈T,G, q〉 ∈ init : (T = G ∧ isRoot(G, F)) ∧
∀X, Y ∈ S : (step(X) = Y ⇒
∀〈T, G, q〉 ∈ Y : ∃〈T ′, G′, q′〉 ∈ X :

(T = T ′ ∨ (extendsByOne(T, T ′) ∧ wasAdded(G, T, T ′)))
)

The above definition formalizes in LST the description of a stochastic search strat-
egy given at the beginning of this section.

4. A Simple Example: Greedy Search
We illustrate the use of our framework by specifying in LST the rather simple search
strategy known as greedy search. This is a deterministic search strategy, which means
that all triples in C are actually of the form 〈T,G, 1〉, representing the fact that, at each
iteration, some node G is visited with probability 1. More complex examples involving
“truly” stochastic metaheuristics (e.g., simulated annealing, genetic algorithms), which
are not included here for lack of space, can be found in [do Amaral 2004].

We need to define two additional useful terms: in many search strategies, the nodes
of the search space are evaluated according to some heuristic function. In our language,
a heuristic function to evaluate the nodes of a given labeled forest F can be defined as

6For space limitations, we do not include the definitions of the “finiteness” predicate or of the summation
term. See [do Amaral 2004].

a term h of type Nnodes(F), where N is the natural number object. In other words, the
“grade” a node receives upon evaluation is a natural number. We assume that the lower
the grade, the better the evaluation.

For every search strategy 〈init , step〉 we may define by simple recursion (see
[Bell 1988]) a term stage of type SN, where N is the natural number object. The
idea is that, given any natural number n, the term stage(n) will be equivalent to
step(step(· · · step(init) · · ·)), with n applications of step.

In a simple greedy search strategy, the node visited at each stage after the first is
the best child of the node visited in the previous stage, as long as the best child has a better
(or equal) evaluation than the node visited in the previous stage. Nothing is assumed about
the initial node.

As simple greedy search is deterministic rather than stochastic, for each n the set
stage(n) is a singleton. To simplify the formulae, for all n we consider stage(n) to be a
pair of the form 〈T,G〉, with T representing the labeled forest (a tree, actually) formed by
the nodes visited so far and G the last node visited.

A search strategy 〈init , step〉 is considered greedy if it satisfies the predicate in
Fig. 1 for some interpretation of h (the heuristic function). There, children(G) is a term
denoting the set of children7 of node G in forest F . Line 4 specifies that the search
terminates (i.e., the current node is revisited indefinitely) when the current node G has no
better children. Line 6 says that otherwise the next node to be visited is the best child of
the current node.

isGreedy(init , step, F, h) ⇐⇒
1 isStochasticSearchStrategy(init , step, F) ∧
2 ∀T, T ′, G, G′ : (
3 step(T, G) = (T ′, G′) ⇐⇒ (
4 G′ = G ∧ ∀K ∈ children(G, F) : h(K) > h(G)
5 ∨
6 h(G′) ≤ h(G) ∧ ∀G′′ ∈ children(G, F) : h(G′) ≤ h(G′′)
7)
8)

Figure 1. Specification of greedy search in LST

By using the sound and complete sequent calculus for Local Set Theory defined in
[Bell 1988], one can prove properties of the search strategies specified in our framework.
We offer below some brief comments on examples of provable formulae involving greedy
search. The properties are quite simple and intuitive, and are included here only for
illustrative purposes. The proofs themselves are not presented, and although a bit lengthy,
can be easily constructed.

The provable formula that says that greedy search is deterministic (i.e., not

7A node G′ is a child of a node G iff extendsByOne(G′, G) is satisfied.

stochastic) asserts that each set stage(n) is a singleton:

∀init , step, F, h : isGreedy(init , step, F, h) ⇒
∀n : ∃!〈T,G〉 : 〈T,G, 1〉 ∈ stage(n)

Furthermore, greedy search never backtracks. Equivalently, at each iteration, the
subforest consisting of all nodes visited by the search is actually a linear tree. This is
expressed by the following provable formula (recall that a node is identified with a path
from the root to the node; i.e., a finite linear tree):

∀init , step, F, h : isGreedy(init , step, F, h) ⇒
∀n : ∀〈T, G, q〉 ∈ stage(n) : isNode(T)

The implementation of theorem-proving and model-checking techniques for LST
is work in progress. As soon as this is completed, we will be able to present examples of
the verification of more complex, real-life properties of search strategies.

5. Conclusion
Related work. Our use of category- and topos-theoretical tools and techniques to build
frameworks for problems and (meta)heuristics is, to the best of our knowledge, unprece-
dented. In [Blass 1995], different categories of problems and reductions (“questions and
answers”) are examined, and — somewhat surprisingly — found to be present in sub-
jects as diverse as linear logic and cardinal characteristics of the continuum. Our category
Prob of problems is a minor variation of one of these categories of questions and an-
swers. A deeper study of Prob and related categories is beyond the scope of this article,
but can be found in [do Amaral 2004].

In [Leal et al. 2001], categories of optimization problems and reductions are de-
fined, and approximation algorithms are examined from a categorical perspective, but no
topos-theoretical considerations are made, and the approach is not logic-based.

Lately, there has been great interest in formal models for search strategies
motivated by the need to define and implement software frameworks and object-
oriented algorithms for optimization problems, as discussed in [Fink et al. 2002] and
[Voss and Woodruff 2002]. The models defined in that kind of work are usually in the
form of class or component libraries in object-oriented languages or in the form of new
modeling languages (or search-oriented extensions of existing languages) like that in
[Van Hentenryck and Michel 2002], possibly coupled with automatic problem solvers.

Further research. Deeper considerations about our framework can be found in
[do Amaral 2004]. Future work includes the development of theorem-proving and model-
checking capabilities for our framework, as well as the application of these capabilities to
the specification and verification of (meta)heuristic search algorithms found in practice.

References
Bell, J. L. (1988). Toposes and Local Set Theories, an Introduction. Oxford U. Press.

Blass, A. (1995). Questions and answers: a category arising in linear logic, complexity
theory, and set theory. In Proceedings of the Workshop on Advances in Linear Logic,
pages 61–81. Cambridge University Press.

do Amaral, F. N. (2004). Teoria de Modelos para Heurísticas Baseada em Topoi (in
Portuguese). PhD thesis, PUC-Rio, Brazil. Available at http://www2.dbd.
puc-rio.br/arquivos/145000/147500/10_147591.htm.

Fink, A., Voss, S., and Woodruff, D. (2002). Metaheuristic class libraries. Kluwer.

Goldblatt, R. (1979). Topoi – the Categorial Analysis of Logic. North Holland.

Leal, L. A. S., Menezes, P. B., Claudio, D. M., and Toscani, L. V. (2001). Optimization
problems categories. In Moreno-Diaz, R. and Quesada-Arencibia, A., editors, EURO-
CAST 2001 – Extended Abstracts, pages 93–96.

Pearl, J. (1985). Heuristics: Intelligent Search Strategies for Computer Problem Solving.
The Addison-Wesley Series in Artificial Intelligence. Addison-Wesley.

Van Hentenryck, P. and Michel, L. (2002). The modeling language OPL: A short
overview. In [Voss and Woodruff 2002].

Voss, S. (2001). Meta-heuristics: The state of the art. In Proceedings of the Workshop on
Local Search for Planning and Scheduling, pages 1–23. Springer-Verlag.

Voss, S. and Woodruff, D. L., editors (2002). Optimization Software Class Libraries.
Kluwer.

