A Real-Time Specification Language

Fernando Naufel do Amaral
e-mail: fnaufel@inf.puc-rio.br

Edward Hermann Haeusler
e-mail: hermann@inf.puc-rio.br

Markus Endler
e-mail: endler@inf.puc-rio.br

PUC-RioInf.MCC22/02 August, 2002

Abstract: A specification language for real-time software systems is pre-
sented, along with a model-theoretic semantics. Notions from Category Theory
are used to specify how the components of a system should interact. The po-
tential role of the proposed language in the search for interoperability of speci-
fication formalisms is briefly discussed.

Keywords: real-time systems, concurrent systems, formal specification, cat-
egory theory, interoperability.

Resumo: Apresenta-se uma linguagem de especificagdo para sistemas de soft-
ware de tempo real, acompanhada de uma semantica em teoria dos modelos.
Usam-se nogbes de Teoria das Categorias para especificar como os componentes
de um sistema devem interagir. Discute-se brevemente o papel potencial da
linguagem proposta na busca pela interoperabilidade de formalismos de especi-
ficacdo.

Palavras-chave: sistemas de tempo real, sistemas concorrentes, especificacdo
formal, teoria das categorias, interoperabilidade.

A Real-Time Specification Language

Fernando Naufel do Amaral,
Edward Herman Haeusler,
Markus Endler
Dept. of Informatics, PUC-RJ,Brazil

September 27, 2002

Abstract

A specification language for real-time software systems is presented,
along with a model-theoretic semantics. Notions from Category Theory
are used to specify how the components of a system should interact. The
potential role of the proposed language in the search for interoperability
of specification formalisms is briefly discussed.

1 Introduction

The aim of this work is to present RT-Community, a specification language
for real-time reactive systems. Using the language, one is able to specify the
computations of the individual components of a real-time system as well as the
way these components interact with each other. This makes RT-Community
suitable as an architecture description language (ADL) in the sense of [2].

RT-Community is an extension of the specification language Community
([9]), from which it inherits its characteristics as a coordination language ([5]).
Roughly speaking, this means that it supports the separation between compu-
tational concerns (what each component does) and coordination concerns (how
components are put together and how they interact to present the behavior
expected of the system as a whole).

The clear separation between computation and coordination may facilitate
the integration of different formalisms in the specification of a system: the com-
putations of the components may be specified at different levels of abstraction,
using different languages (e.g., automata, temporal logics, programming lan-
guages etc.), whereas the signatures of the components, which indicate their
functionality and the potential ways they can be coordinated with other com-
ponents, are the only features of components that need to be taken into account
in order to describe the architecture of the composite system.

The modeling of time in RT-Community merits some comments. Although
the language and its semantics are essentially independent of the time domain
used (any total order with a minimum element will do), we have adopted the
set of nonnegative real numbers (R>g), differently from other formalisms in the
literature ([6], for instance), which represent time as a discrete total order. We
believe a densely-ordered time domain is more adequate to model the behavior
of physical systems working in continuous time; a discrete time domain would

force us to choose a fixed “time quantum” a priori, a decision which may bring
the specification of a system inconveniently close to implementation concerns.
Among other formalisms which use dense time domains, we cite Alur and Dill’s
Timed Automata ([3]) and Wang’s TCCS ([12]).

This paper presents the syntax and formal semantics of RT-Community in
section 2. Section 3 shows how composition is done in RT-Community by way of
some basic notions of Category Theory. Finally, section 4 offers some concluding
remarks, especially about the potential role of RT-Community in the search for
interoperability of specification formalisms.

2 RT-Community

An RT-Community component has the form shown in Figure 1, where

e V is a finite set of variables, partitioned into input variables, output vari-
ables and private variables. Input variables are read by the component
from its environment; they cannot be modified by the component. Out-
put variables can be modified by the component and read by the environ-
ment; they cannot be modified by the environment. Private variables can
be modified by the component and cannot be seen (i.e. neither read nor
modified) by the environment. We write loc(V') for pro(V) U out(V). We
assume given but do not make explicit the specification of the data types
over which the variables in V range.

e (' is a finite set of clocks. Clocks are like private variables in that they
cannot be seen by the environment; they can be consulted (i.e. their
current values may be read) by the component; however, the only way a
component can modify a clock variable is by resetting it to zero.

e F'is aformula specifying the initial state of the component (i.e., conditions
on the initial values of variables in loc(V)). The initial values of input
variables are unconstrained, and clocks are always initialized to zero.

e ' is a finite set of action names. Actions may be either shared or private.
Shared actions are available for synchronization with actions of other com-
ponents, whereas the execution of private actions is entirely under control
of the component.

e The body of the component consists of a set of instructions resembling
guarded commands. For each action g € T, we have the time guard T(g),
which is a boolean expression over atomic formulae of the form x ~ n and
x —y ~ n, where z,y € C,n € R>o and ~ is one of {<,>,=}; the data
guard B(g), which is a boolean expression constructed from the operations
and predicates present in the specification of the data types of V; the reset
clocks R(g) C C, containing the clocks to be reset upon execution of g;
and the parallel assignment of a term F(g,v) to each variable v that can
be modified by g. We denote by D(g) the set of variables that can be
modified by g. This set will be called the write frame (or domain) of g.

The execution of a component proceeds as follows: at each step, an action
whose time and data guards are true (such an action is said to be enabled)

component P
in in (V)
out out (V)
prv prv (V)

clocks C
init F
do
I
g € sh(T') 9:[T(9),B(g) — R(9), llvep) v:=F(g,v)]

depruT) prv g:[T(9),Blg) = R(9), llventey ©=F(g,)]

end component
Figure 1: The form of an RT-Community component

may be executed. If more than one enabled action exists, one may be selected
non-deterministically. If an action is selected, the corresponding assignments
are effected and the specified clocks are reset. If no action is selected, time
passes, the component idles and all clocks are updated accordingly (i.e., the
semantics is based on global time). However, three conditions must be met:
(1) a private action may not be enabled infinitely often without being infinitely
often selected (the fairness condition), (2) time may not pass if there is an
enabled private action (the urgency condition), and (3) a shared action may not
be disabled solely by the passage of time (the persistency condition).

If a component has a non-empty set of input variables, it can only be “ex-
ecuted” in some environment which provides values to the component’s input
variables. Such a component is called open; otherwise it is called closed. It
will be made clear below how open components may be connected in order to
form a closed system. However, in the definition of the formal semantics of RT-
Community, we will include in the behavior of an open component all possible
behaviors of its environment.

A model-theoretic semantics of RT-Community based on Time-Labelled
Transition Systems will be given below.

It should be remarked that one of the latest versions of (untimed) Commu-
nity ([9]) includes mechanisms for underspecification, such as lower and upper
bounds for action data guards (i.e., safety conditions and progress conditions,
respectively), and the partial specification of the effect of an action g on its write
frame D(g), by means of a boolean expression (involving primed variables, as is
customary in other formalisms) instead of a parallel assignment. Furthermore,
Community components may be parameterized by sorts and operations. These
mechanisms will not be needed for the purposes of this paper, but they can be
easily incorporated into RT-Community.

2.1 A Simple Example

We present a component for the “snooze” feature of an alarm clock. Component
snooze is activated when the timekeeping component of the alarm clock (not
shown) reaches the preset time, as indicated by action firstRing. This action
sets the output variable ringing to true, a change that may be detected by a
“bell” component (not shown either). If the user presses the “off” button at this

component snooze

in float initialInterval, loat minimum
out bool ringing
prv float interval
clocks ¢
init —ringing A interval = —1
do
[] firstRing: — ringing := true || interval := initialInterval
[] snooze: ringing A interval > minimum —
reset(c) || ringing := false || interval := interval/2
[] off: ringing — ringing := false || interval := —1
[] prv timeout: ¢ == interval — ringing := true

end component
Figure 2: The snooze component

point, the alarm and the snooze component are turned off, as indicated by the
off action. However, if the user presses the “snooze” button (action snooze), the
alarm stops ringing, only to ring again after a preset time interval. This second
ringing of the alarm is activated by the snooze component upon detecting the
timeout (private action timeout). Now, if the user presses the “snooze” button
this time, he will be allowed to sleep for an additional period with half the
duration of the initial interval. This pattern repeats, with the interval being
halved each time the alarm rings and the user presses the “snooze” button,
until either the user presses the “off” button or the interval reaches a certain
minimum duration (in this last case, the alarm will go on ringing until the user
presses the “off” button).

The duration of the initial interval and the minimum duration are provided
by the environment of the snooze component, as indicated by input variables
initialInterval and minimum. The specification of the snooze component is given
in Figure 2. There, time guards and data guards that have the constant truth
value true are omitted, and the resetting of a clock c¢is indicated by the reset(c)
instruction.

2.2 Semantics

Definition 2.1 (TLTS associated to a component) Let R>o denote the set
of all nonnegative reals. To each component P of the form shown in Fig-
ure 1 there corresponds a Time Labeled Transition System (TLTS — see [1, 12])
Tp =< Sp,I'p,s9, — >, where

e Sp = {(V,C) | V is a valuation of V and C is a mapping from C to
Rzo} U sp

Given the algebra U with set of sorts S, V is an S-indexed family of
mappings V, : V; = U, where V; denotes the set of variables of sort s
used by the component P. The initial state sg is a “special” valuation,
defined below, where all variables contain undefined values.

o I'p=shr(T) U pro(T) U {e(d)|d € R>o} U {env, init}

Each transition labeled by e(d) represents the passage of d time units.
env is a name representing actions of the environment of the component.
The name init represents the initial actions of the component, taking it
from the initial state sg to states where all variables have been initialized
(compare the “entry transitions” of the Action Diagrams of [6]).

e 590 = (Vo,Co), where V), assigns to each variable the undefined value L,
not in the algebra U; Cy assigns to each clock the value zero.

The transition relation — is defined as follows:

e For all data valuations V,

Vo, Co) P (v, c) iff V= F

where F is the formula specifying the initial state of the component. Note
that F' can only constrain the values of local variables; there are no con-
straints on the values of input variables at (V,Cy), in order to include all
of their possible initializations by the environment.

e For all data valuations V and V', and for all clock valuations C,

w,0) &8 (v'.c) iff V(v) = V'(v) for all v € loc(V)
Actions of the environment cannot change the value of local variables of
the component.

e For all g € shr(T) U pro(T), (V,C), (V',C’') € Sp,

v,0) L (v',c") iff VEB() A
CET() A
V() = [F(g,00)]Y, ., V! (vm) = [F(g,vm)]”
where D(g) = {v1,...,tm} A
V'(v) = V(v) for all v € loc(V) — D(g) A
C'=C[0/ec1,...,0/cp], where R(g) = {c1,...,¢n}

That is, each shared or private action is enabled precisely at those states
where its data guard and time guard hold, and the effects of the assign-
ments and resetting of clocks by the action are materialized in the target
state.

Note that input variables may not be modified directly by the execution
of g, but they may change under some action of the environment which
is executed in parallel to g; therefore, their values are unconstrained in
the target state. The clocks of a component, however, cannot be modified
by its environment. The constraints on clock values indicate that the
execution of an action is instantaneous.

e For all (V,C),(V',C") € Sp,

v,0) W orey it v=v ac=c

Each state has an idling transition to itself, with no elapsed time.

e For all d € R>q — {0}, (V,C) € Sp,

v,C) G(—dg (V,C+d) iff there areno g € prv(I'),s € Sp such that
w,0) L s
and
for all g € shr(T")
(g enabled at (V,C) = g enabled at (V,C + d))

where C +d is the valuation that assigns to each clock c the value C(c) +d.
That is, the delay action €(d) does not alter any data variables (local or
input), but modifies clock values as expected.

Two provisos on the passage of time: (1) private actions are considered
urgent — when enabled, they must not be forced to wait (cf. a timed
version of CCS in [12]); and (2) shared actions are considered persistent —
when enabled, they may not be disabled by the passage of time (but they
may be disabled when their data guards are falsified).

Definition 2.2 (Computations of a TLTS)
A computation of a TLTS T =< S,I',sq,—> > is an infinite sequence
(85, 9i)ien with s; € S and g; € T satisfying the following conditions:

Initiality: The state so of the computation is the initial state so of 7T'.

Consecution: For all i € N, s; N Si+1 18 a transition of T'.

d if 9i = G(d)

Progress of time: Let elapsed(i) = { 0 otherwise

For all d € R> there exists ¢t € N such that 22:0 elapsed(i) > d.

Strong fairness for private actions: Any private action that is infinitely of-
ten enabled must be taken infinitely often.

Given these definitions, the behavior of an RT-Community component P is
represented by all the computations of Sp.

3 Composing RT-Community Components

We use basic concepts from Category Theory ([8, 10, 14]) to define how com-
position is done in RT-Community. The use of Category Theory allows us to
describe the interaction of components in an abstract fashion, thus establishing
the essentials of their coordination in such a way that RT-Community compo-
nents may be replaced by specifications in other formalisms (e.g. a temporal
logic with time-bounded operators such as MTL — see [4]), a desirable feature
when our ultimate goal is to promote the interoperability of formalisms.

3.1 The Categories of Signatures and Components

Formally, an RT-Community component is a pair (X, A) with ¥ the signature
and A the body of the component.

Definition 3.1 (Signature of a component) An RT-Community signature
is a tuple ¥ =< V,C,I',tv,ta, D, R >, where V is a finite set of variables, C is
a finite set of clocks, T is a finite set of action names, tv : V. — {in, out, pro} is
the typing function for variables, ta : I' — {shr,prv} is the typing function for
action names, D : T —» 21°¢(V) s the write frame function for action names,
and R : T — 2C is the reset clock function for action names.

Definition 3.2 (Body of a component) The body of an RT-Community com-
ponent with signature ¥ is a tuple A =< T,B, F,I >, withT : T’ — PROP(C)
the time guard function for action names, B : T — PROP(V) the data guard
function for action names, F : I' — (loc(V) — TERM(V)) the assign-
ment function for action names, and I a formula over loc(V') specifying the
ingtial state(s) of the component. Here, PROP(C) denotes the set of boolean
propositions over clocks, PROP (V') denotes the set of boolean propositions over
variables and TERM (V') is the set of terms of the term algebra of the data types
inwolved. Function F' must respect sorts when assigning terms to variables.

We now define the category Sign of RT-Community signatures. A compo-
nent may already be the result of the composition of smaller components. The
morphisms in Sign, then, are defined so as to capture the relationship between
(the signature of) a program P, and (the signature of) the system P in which
P, participates as a component. This embedding (or superposition) viewpoint
is usual when modeling concurrent systems through Category Theory: Winskell
[14] defines a similar category for transition systems, which differs from ours in
the fact that his morphisms capture a relationship inverse to the one we define
here: a morphism from a system S; to a system Ss in his category means that
S1 is a composite system with Sy as one of its components.

In what follows, then, it is helpful to keep in mind that ¥; is the signature
of a component (referred to as “the component”) that is embedded in a system
(referred to as “the system”) whose signature is Y.

Definition 3.3 (Category of signatures) Sign is the category that has sig-
natures of RT-Community as objects; a morphism o : 1 — Yo in Sign is a
triple < 0,,0.,0, > defined as follows:

oy : Vi — V5 is a total function such that

e For all v € V4, sorta(oy(v)) = sorti(v). Variables of the component are
mapped to variables of the system in such a way that sorts are preserved;

e For all 0,i,p € Vi, 0 € out(V1) = 0,(0) € out(Va), i € in(V1) = 0,(i) €
in(Va)Uout(Va), p € pro(V1) = o,(p) € out(Vz2). The nature of each vari-
able is preserved, with the exception that input variables of the component
may become output variables of the system. This is because, as will be
seen below, an input variable of a component may be “connected” to an
output variable of another component; when this happens, the resulting
variable must be considered an output variable of the system: its value
can be modified by the system, and it remains visible to the environment
(which, however, cannot modify it).

o : C1 — (s is a total, injective function from the clocks of the component
to the clocks of the system. In other words, all clocks of the component must
retain their identity in the system.

o, : I's — I'y is a partial function from the actions of the system to the
actions of the component. ¢, is partial because an action of the system may or
may not correspond to an action of the component; i.e., if the component does
not participate in a given action g of the system, then o,(g) is undefined. Fur-
thermore, note the contravariant nature of o, compared to o, and o.: because
each action of the system can involve at most one action of the component,
and each action of the component may participate in more than one action of
the system, the relation must be functional from the system to the component.
Besides, o, must satisfy the following conditions (D(v) for a variable v denotes
the set of actions having v in their domain):

e For all g € 'y for which o,(g) is defined, g € shr(T'2) = 04(g) € shr(I'1)
and g € pro(T2) = 04(9) € pro(T1). An action of the system is of the
same nature (shared or private) as the component action involved in it.

e For all g € T2 for which o,(g) is defined, and for all v € loc(V1), v €
Di(04(g)) = 04(v) € Da(g) and g € Ds(0,(v)) = 04(9) € D1(v). If
a component variable is modified by a component action, then the corre-
sponding system variable is modified by the corresponding system action.
Besides, system actions where the component does not participate cannot
modify local variables of the component.

The following item states analogous conditions for clocks of the compo-
nent:

e For all ¢ € Ty for which o,(g) is defined, and for all ¢ € C;, ¢ €
Rl(aa(g)) = Uc(c) € R2(g) and g € R2(0c(c)) = Uu(g) € Rl(c)'

We define the category of RT-Community components, with whole compo-
nents as objects and special signature morphisms between them.

Definition 3.4 (Category of components) Comp is the category that has
components of RT-Community as objects; a morphism o : (31,A1) — (X2, Ag)
in Comp is a signature morphism o : X1 — Yo satisfying the following condi-
tions:

e For all actions g in I's with 0,(g9) defined, we have & = By(g) —
d(B1(oa(9))) and @ | Ta(g9) — d(Ti(04(9))), where & is a suitable
axiomatization of the specification of the data types involved, and & is the
extension of ¢, to the language of terms and propositions. The behavior
of the system (X2, A,) is such that an action g of the system cannot dis-
respect the data and time guards of the corresponding action o,(g) of the
component; i.e., the system can only strengthen said guards.

o & =1, = 5([1), with ® and & as above. The initial state of the component
must be implied by the initial state of the system.

e For all actions g in 'y with 6,(g) defined, and for all local variables v in
D1 (04(g)), we have Fz(g)(oy(v)) = a(Fi(oa(g))(v)) , where, as before, &
is the extension of ¢, to the language of terms and propositions. Recall
that F' is the function that assigns to each action g a mapping from the
variables in the action’s domain D(g) to terms of the term algebra of the
data types involved. This means that an action g of the system can only

assign to a local variable of the component the “translation” of the value
that the corresponding action o,(g) of the component does.

3.2 Channels and Configurations

In categorial terms, the composition of two components P; and P, that do not
interact at all (either via input and output variables or via shared actions) is
given by the coproduct P; + P> of the corresponding objects in the category
Comp. This is a relatively uninteresting way to compose two components: the
set, of variables of the resulting system is the disjoint union of the sets of variables
of the components (an eventual name clash is seen as accidental, and resolved
by qualifying variable names with, say, the component’s name); likewise, the set
of actions of the resulting system is the disjoint union of the sets of actions of
the components.

In the more interesting case where there must be interaction between P; and
P5, the interaction is either in the form of the connection of variables or in the
form of the synchronization of actions (or both). This interaction is specified
using a third component, called a channel. Given components P; and P, and a
channel P,, the composition of P; and P, via P, is represented by the diagram

P &P 2P,

When certain conditions are met, such a diagram is called a configuration.
In a configuration, morphisms o7 and o3 specify how P; and P, should interact,
as discussed below:

Variables: The only variables that the channel P, can contain are of the
input kind, so they can be mapped to input or output variables of P; and P;.
Given an input variable v of P., we say that variables o1(v) and oa(v) of P
and P», respectively, are connected. If two input variables are connected, the
result will be an input variable of the composite system. If an input variable
and an output variable are connected, the result will be an output variable of
the composite system. We do not allow two output variables to be connected
(a diagram where this happens is not considered a well-formed configuration).
Furthermore, private variables and clocks cannot be connected, so we do not
allow the channel P. to have private variables or clocks.

Actions: The only actions that the channel P, can contain are of the shared
kind. Furthermore, these actions must be “empty” in the sense that their time
and data guards are the constant values true, they do not reset any clocks and
do not modify any variables (i.e. their write frame is empty). This means that
the channel P, is a “neutral” component with no behavior of its own, serving
only as a kind of “wire” for joining the actions of P, and P.

Given an action g1 of P, and an action g of P, having 01(g1) = 02(92) = ¢
for g an action of P,, we say that g; and g, are synchronized. When two actions
are synchronized, the result will be a joint action of the composite system. This
joint action will be of the shared kind, its data and time guards being the
conjunction of the corresponding guards of g; and g», its effect being to reset
the union of the sets of clocks reset by g; and g2 and to perform the assignments
in the union of the sets of assignments dictated by ¢g; and g,.

Formally, the system that results from the composition of P, and P, through
channel P, is the pushout (in the category Comp) of the configuration above,

component timekeeping

in Time alarmTime, Time currentTime

out float snoozelnterval, float minimum

prv int ticksPerSec, Time now, boolean alarmOn

clock ¢

init snoozelnterval = 10 A minimum = 1 A ticksPerSec = ... A = alarmOn
do

[] setTime: — now := currentTime || reset(c)

[] setAlarm: — alarmOn := true

[] ring: alarmOn A now == alarmTime — skip

[] alarmOff: — alarmOn := false

[] prv keepTime: ¢ == ticksPerSec — now := now + 1 || reset(c)

end component
Figure 3: The timekeeping component

written Py +p, P>. In general, for a configuration diagram involving any (finite)
number of channels and components, the resulting system is given by the colimit
of the diagram. A configuration is said to be well-formed when it satisfies the
conditions described above. For well-formed configurations, the colimit will
always exist.

As discussed in works about the original, untimed version of Community (e.g.
[9]), the requirement that channels have no behavior of their own gives rise to
a close relationship between configuration diagrams in the category Comp of
components and the corresponding diagrams in the category Sign of signatures.
This relationship is materialized in the properties of the forgetful functor sig
mapping each component (X, A) to its signature X. These properties confirm
that specifying the interactions between components in a complex system can
be done solely on the basis of the information provided by the signatures of
such components. In practice, this allows us to use signatures as channels for
simplifying our diagrams.

3.3 A Simple Example

In order to illustrate composition in RT-Community, we present the timekeep-
ing component of the alarm clock discussed in Section 2.1 and show how the
timekeeping and snooze components can be put together. The snooze compo-
nent was shown in Figure 2. The timekeeping component is shown in Figure 3.
There, it is assumed that a data type Time is available, and that adding 1 to a
variable of this data type corresponds to adding one second to the time value it
contains. Besides, the fact that an action performs no assignments and resets
no clocks (like the ring action) is indicated by the abbreviation skip.

When composing the timekeeping and snooze components, we want to iden-
tify variables smoozelnterval and initiallnterval, as well as variables minimum
(in timekeeping) and minimum (in snooze), so that the input variables in snooze
will contain the constant values provided by timekeeping.

Furthermore, we want to synchronize actions ring and firstRing so that
snooze will be activated exactly when timekeeping detects that the current time
equals the time the alarm has been set to ring. We also want to synchronize the
alarmOff and off actions, meaning that when the user presses the “off” button,

10

both the snooze and the alarm mechanisms are turned off.

Notice that the resulting composite system is still open, in the sense that
there are still unconnected input variables: currentTime and alarm Time receive
values given by the user when he or she wants to set the time or the alarm,
operations that are made available by the shared actions setTime and setAlarm,
respectively.

Further interaction with the environment is given by the following features:

e The snooze action of the snooze component remains as a shared action of
the system; it must be synchronized with an action of the environment
representing the pressing of the “snooze” button while the bell is ringing.

e The joint action (alarmOff | off) is a shared action of the system that
must be synchronized with an action of the environment representing the
pressing of the “off” button while the bell is ringing.

e The output variable ringing in the snooze component must be connected to
an input variable of a component representing the actual bell mechanism.

4 Concluding Remarks

RT-Community, like untimed Community, lends itself to the specification of
architectural connectors that express interaction of a more complex nature than
in the examples presented here. Other features of the language include the
capacity for underspecification, such as lower and upper bounds for action data
guards (i.e., safety conditions and progress conditions, respectively), and the
partial specification of the effect of an action g on its write frame D(g), by
means of a boolean expression (involving primed variables, as is customary in
other formalisms) instead of parallel assignment.

When specifying the components of a real-time system, it may be appropriate
to use formalisms of a higher level of abstraction than RT-Community. One
example would be the use of a real-time temporal logic (e.g. MTL — [4]) to
specify the behavior of a component. In fact, we expect that by using mappings
between logics such as those described in [7], a wider range of formalisms may
be employed in the specification of a single system, allowing for a situation of
interoperability among logics and specification languages.

The adaptation of RT-Community to systems involving mobility and dy-
namic reconfiguration is the subject of current study. A similar goal is being
pursued in relation to untimed Community ([13]), where graph rewriting is used
to reflect runtime changes in the system. We are investigating an alternative
approach, where channels may be passed between components to allow them
to engage in new connections at execution time — a strategy similar to the one
used in 7-calculus ([11]).

RT-Community is currently being contemplated for the specification of hy-
permedia presentations, a domain where real-time constraints occur naturally.

References

[1] L. Aceto, A. Burgueiio and K.G. Larsen, Moded] Checking via Reachabil-
ity Testing for Timed Automata, BRICS Report Series RS 97-29 (1997).

11

[2] R. Allen and D. Garlan, A Formal Basis for Architectural connectors,
ACM TOSEM, 6(3)(1997) 213-249.

[3] R. Alur and D.L. Dill, A Theory of Timed Automata, Theoretical Com-
puter Science 126(1994), 183-235.

[4] E. Chang, Compositional Verification of Reactive and Real-Time Systems,
PhD Thesis, Stanford University (1995).

[5] D. Gelernter and N. Carriero, Coordination Languages and their Signifi-
cance, Comm. ACM 35, 2 (1992) 97-107.

[6] T.A. Henzinger, Z. Manna and A. Pnueli, Temporal Proof Methodologies
for Timed Transition Systems, Information and Computation 112 (1994)
273-337.

[7] A. Martini, U. Wolter and E.H. Haeusler, Reasons and Ways to Cope with
a Spectrum of Logics, in J. Abe and J.I. da S. Filho (eds.), Logic, Artifi-
cial Intelligence and Robotics (proc. LAPTEC 2001), series: Frontiers in
Artificial Intelligence and Applications 71, IOS Press, Amsterdam (2001)
148-155.

[8] B. Peirce, Basic Category Theory for Computer Scientists, The MIT Press
(1991).

[9] J.L. Fiadeiro and A. Lopes, Semantics of Architectural connectors, in M.
Bidoit and M. Dauchet (eds), TAPSOFT 97, LNCS 1214, Springer-Verlag
(1997) 505-519.

[10] P.B. Menezes and E.H. Haeusler, Teoria das Categorias para Ciéncia da
Computagio, Sagra Luzzato, UFRGS (2001).

[11] R. Milner, Communicating and Mobile Systems: the w-Calculus, Cam-
bridge University Press (1999).

[12] Y. Wang, CCS + Time = An Interleaving Model for Real-Time Sys-
tems, in J.L. Albert and B. Monien and M. Rodriguez-Artalejo, editors,
Automata, Languages and Programming, 18th International Colloquium,
volume 510 of Lecture Notes in Computer Science, Madrid, Spain, 8-12
July 1991, Springer-Verlag, 217-228.

[13] M. Wermelinger and J.L. Fiadeiro, Algebraic Software Architecture Re-
configuration, in Software Engineering-ESEC/FSE’99, volume 1687 of
LNCS, Springer-Verlag (1999) 393-409.

[14] G. Winskell and M. Nielsen, Categories in Concurrency, in A.M. Pitts
and P. Dybjer (eds.), Semantics and Logics of Computation, Cambridge
University Press (1997) 299-354.

12

