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1. Introduction

This paper is inserted in the context of an environment for real-time object-
oriented software development based on Formal Methods. The framework depicted
here has been considered for use at a research laboratory at PUC-RJ in the develop-
ment of the prototype of a CASE environment for an industrial partner in the field
of telecommunications ([HHMF98]).

The basic architecture of the environment consists of a set of tools implemented
over an integration platform (currently CORBA).

Conceptually, the environment consists of several planes that relate the tools to
various aspects of functionality. It has a user plane, a formal plane and an implemen-
tation plane. In the user plane, software designers model applications and libraries via
class relationships, inter-object communication and state diagrams. The user plane
can be used to produce a so-called scenario (i.e., fixing parameters in the design to
specific values), which is then used by a model checker (SMV – Symbolic Model Veri-
fier [CMCH96]) for verifying properties of the design. The formal plane is also a target
for a mapping from designs to the action logic RETOOL ([Ama00, CFH97, FH98]) in
order to support general reasoning about the design, as opposed to verification and
validation tasks. The implementation plane is responsible for deriving code, through
transformation rules, in a high level programming language (DDL – see [Car96]) asso-
ciated with the diagrammatic class notation of the environment. Finally, executable
code is generated from the DDL code, again through transformation rules.

The focus of this paper is on the support that the formal plane was designed to
provide for object-oriented development. More specifically, the paper concentrates on
the way the logic RETOOL allows reasoning about the enabling conditions, postcondi-
tions and time bounds of the actions involved in the design. The version of RETOOL
presented here is sound and complete, as opposed to the tentative axiomatizations of
[CFH97] and [FH98].

The paper is structured as follows: section 2. discusses the action logic RETOOL
and its combination with a linear-time temporal logic (MTL – see [Cha95]) to abstract
temporal properties of actions; section 3. introduces the concrete model of Timed Ac-
tion Transition Diagrams, used to represent designs; section 4. provides an example
of the use of these formalisms to reason about a specific design; finally, section 5.
discusses, also through an example, how RETOOL theories can be combined to gen-
erate a theory that describes the parallel composition of the objects described by the
original theories.
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2. The Logics

This section presents the action logic RETOOL in detail and discusses how it can
be combined with a temporal logic (MTL) to abstract temporal properties of actions.†

2.1 RETOOL: the Language

The primitive syntactic entities of RETOOL are attribute symbols (which, in this
propositional version of the logic, are simple propositional letters), and action symbols.
We denote the (non-empty) set of attribute symbols as A, and the (non-empty) set
of action symbols as Γ.

The logic presupposes an infinite totally ordered set (TIME, ≤), with minimum
0. A constant ∞ is available, such that ∞ 6∈ TIME and t ≤ ∞, ∀t ∈ TIME.‡ The
other syntactic categories are:

• State Propositions (SP ): p ::= a | ¬p | p→ p′, where a ∈ A;

• Action terms (AT ): t ::= g | plδ
uq, where g ∈ Γ, p, q ∈ SP , l ∈ TIME, u ∈

TIME ∪{∞ }, and l ≤ u;

• Time terms (TT ): T ::= l(t) | u(t) | ∞ | 0 | 1 | 2 | ...

• Formulae: φ ::= a | t1 ⊃ t2 | ¬φ | φ → φ′ | [t]φ | [ ]p | T1 ≤ T2, where a ∈ A,
t, t1, t2 ∈ AT , p ∈ SP , and T1, T2 ∈ TT .

It should be noted that, in the definition of time terms, l and u are not function
symbols; in fact, as will be seen in a later section, l(t) and u(t), for t an action term,
are mere abbreviations of constant symbols that denote elements of TIME ∪ {∞}.

2.2 RETOOL: the Semantics

The semantics of RETOOL is defined over structures that are based on the notion
of timed transition systems [HMP92]: given a set A of attribute symbols and a set Γ
of action symbols, a timed frame F for A and Γ is a sextuple (W,→, l, u, I, w0), where

• W is a set of states;

• For each g ∈ Γ,
g
→ ⊆W ×W is the transition relation for action g;

• l maps each g ∈ Γ to an element l(g) ∈ TIME;

†In order to make the presentation clearer, the propositional versions of the logics are used, but
the reasoning can easily be extended to a first-order context, with typed variables as attributes and
arbitrary assignments as actions.

‡For our purposes, time can be modelled by the set of natural numbers and the corresponding ≤
relation.
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• u maps each g ∈ Γ to an element u(g) ∈ TIME ∪{∞} such that u(g) ≥ l(g);

• I : A→ 2W is an interpretation of the attributes, where each a ∈ A is assigned
the set of worlds where a is true;

• w0 is the initial state.

Every action g ∈ Γ has a lower bound l(g) and an upper bound u(g). Intu-
itively, the lower bound defines the minimum delay that must be observed for the
transition to take place (provided all the necessary conditions for the occurrence of
such a transition are satisfied). The upper bound defines the maximum delay during
which the transition must occur (again, provided all necessary conditions are satis-
fied). Formally, lower and upper bounds are defined through the use of the notion of
computation:

A timed state sequence [HMP92] for a timed frame is a pair ρ =< σ,T >, where σ is
an infinite sequence of states (σi ∈W ) and T is an infinite sequence of corresponding
times (Ti ∈ TIME), satisfying:

• monotonicity: for all i ≥ 0, either Ti+1 = Ti, or Ti+1 > Ti and σi+1 = σi.

• progress: for every t ∈ TIME, there is i ≥ 0 such that Ti ≥ t.

A computation [HMP92] over a timed frame is a timed state sequence < σ,T >

such that

• σ is a computation of the underlying transition system, i.e., for every i ≥ 0,

there is a transition σ(i) such that σi
σ(i)
→ σi+1;

• (lower bound): for every i ≥ 0 in the domain of σ, there is a j ≤ i such that
Ti − Tj > l(σ(i)) and σ(i) is enabled in every state σk for j ≤ k ≤ i.

• (upper bound): for every g ∈ Γ and i ≥ 0, there is j ≥ i with Tj − Ti ≤ u(g)
such that either g is not enabled at σj or g = σ(j).

The denotation of a state proposition p in a timed frame F is the set of states
defined as follows:

• [[a]] = I(a);

• [[¬p]]F = W \ [[p]]F ;

• [[p→ p′]]F = (W \ [[p]]F ) ∪ [[p′]]F .

The denotation of an action term t in a timed frame F is the set of transitions
defined as follows (where en(g) is the set of states where g is enabled):
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• [[g]]F = {(w,w′) | w
g
→ w′};

• [[plδ
uq]]F = {(w,w′) | ∃g ∈ Γ [(w

g
→ w′) ∧ en(g) ⊆ [[p]]F ∧

∀v, v′((v
g
→ v′) ⇒ (v′ ∈ [[q]]F )) ∧ (l ≤ l(g) ≤ u(g) ≤ u)]}

Note that the denotation of an action term built with the δ operator – plδ
uq –

is the set of all transitions labeled by actions whose necessary condition is p, whose
postcondition is q, and whose time limits are l and u.

The denotation of a time term is an element of TIME ∪ {∞}: we have included
in our language one constant symbol for each element of TIME, as well as a constant
symbol for ∞. For each action symbol g ∈ Γ, l(g) and u(g) denote the time bounds of
g, which are extra-logical information (hence, l(g) and u(g) can also be seen as mere
constant symbols denoting elements of TIME ∪ {∞}). For action terms of the form
pxδ

yq, the time terms l(pxδ
yq) and u(pxδ

yq) can be seen as mere abbreviations of x
and y, respectively.

Finally, the satisfaction of a formula by a timed frame F at a state w is defined
by:

• F , w |= p iff w ∈ [[p]]F ;

• F , w |= (t1 ⊃ t2) iff [[t1]]
F ⊆ [[t2]]

F ;

• F , w |= ¬φ iff not F , w |= φ;

• F , w |= φ→ φ′ iff F , w |= φ implies F , w |= φ′;

• F , w |= [t]φ iff F , w′ |= φ for every w′ such that (w,w′) ∈ [[t]]F ;

• F , w |= [ ]p iff F , w0 |= p;

• F , w |= T1 ≤ T2 iff [[T1]]
TIME ≤ [[T2]]

TIME .

“⊃” is the subsumption operator. To say that action term t1 subsumes action term
t2 is to say that every action denoted by t1 is also denoted by t2 (but not necessarily
the other way around). Subsumption can be seen as a refinement on actions: the
actions denoted by t1 refine those denoted by t2.

2.3 An Axiomatization for RETOOL

The axiom schemes and rules of inference in Figure 1 comprise an adequate axiom-
atization of RETOOL. We assume given an adequate calculus for deriving properties
involving members of TIME ∪ {∞} and the relation ≤.

In the axiomatization, Λ represents a set of RETOOL formulae, the derivability
relation ⊢ is defined in the usual manner, and enabled(t) is an abbreviation for the
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(PC) All axioms and rules of propositional calculus

(K) [t](φ→ ψ) → ([t]φ→ [t]ψ)
[ ](p→ q) → ([ ]p→ [ ]q)

(I) [ ]p→ [t][ ]p
[t][ ]p→ (enabled(t) → [ ]p)
[ ]¬p↔ ¬[ ]p

(N)
Λ ⊢ φ

Λ ⊢ [t]φ

Λ ⊢ p

Λ ⊢ [ ]p

(δ)
Λ ⊢ enabled(t) → p Λ ⊢ [t]q Λ ⊢ l ≤ l(t) ≤ u(t) ≤ u

Λ ⊢ t ⊃ plδuq

(S1) t ⊃ t

(S2) (t1 ⊃ t2) → ((t2 ⊃ t3) → (t1 ⊃ t3))

(S3) (t1 ⊃ t2) → ([t2]φ→ [t1]φ)

(NC) (t ⊃ plδ
uq) → (enabled(t) → p)

(Post) (t ⊃ plδ
uq) → ([t]q)

(Bounds) (t ⊃ plδ
uq) → (enabled(t) → l ≤ l(t) ≤ u(t) ≤ u)

Figure 1: An axiomatization for RETOOL
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formula ¬[t]⊥ (which is true in a given state w iff there is at least one transition
leaving w labeled by an action in the denotation of t).

The soundness and completeness of this axiomatization is proved in detail in
[Ama00]. It should be noted that we employ the following notion of consequence,
or entailment: a set Λ of formulae entails a formula φ (written Λ |= φ) if and only
if every timed frame which satisfies Λ at all states also satisfies φ at all states. This
notion of consequence is called “global consequence” in [Har84]. It is a weaker notion
than the alternative “local” definition of entailment (which stipulates that Λ |= φ if
and only if every state which satisfies Λ also satisfies φ). For our purposes, it is rea-
sonable to employ the notion of global consequence because, in constructing a logical
description Λ of a reactive system S, we expect the formulas of Λ to hold at all states
of the timed frame which represents S.

2.4 MTL

MTL (see [Cha95]) is a linear-time temporal logic with time-bounded operators.
Its models are computations of timed transition systems. We extend the language
of MTL with the action terms of RETOOL taken as propositions (with the intended
meaning that an action term t is true at a given point σi of a computation iff the
denotation of t contains the action responsible for the transition from σi to σi+1). We
also add subsumption formulae of the form t1 ⊃ t2 to MTL, yielding the following
language over a set A of attribute symbols, a set Γ of action symbols, and order
(TIME, ≤) as defined for RETOOL:

τ ::= a | t | t1 ⊃ t2 | ¬τ | τ → τ ′ | XRc τ | τ1URc τ2

where a ∈ A, and t, t1, t2 ∈ AT , c ∈ TIME ∪{∞}, and R is a relation on TIME
∪{∞}.

The semantics of this language is defined over a computation < σ,T > as follows:

• σi, Ti |= a iff σi ∈ I(a);

• σi, Ti |= t iff σ(i) = t;

• σi, Ti |= t1 ⊃ t2 iff [[t1]] ⊆ [[t2]];

• σi, Ti |= ¬τ iff not σi, Ti |= τ ;

• σi, Ti |= τ → τ ′ iff σi, Ti |= τ implies σi, Ti |= τ ′;

• σi, Ti |= XRc τ iff σi, Ti+1 |= τ and (Ti+1 − Ti) R c;

• σi, Ti |= τ1URc τ2 iff, for some k ≥ i, it is the case that σk, Tk |= τ2 and
(Tk−Ti) R c, and, for every j such that i ≤ j < k, it is the case that σj , Tj |= τ1.

RITA • Volume IV • Número 3 • Agosto 99 7
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The temporal operators are neXt, referring to the next state in the computation,
and Until, which states the existence of a future state in which τ2 holds and until
which τ1 holds. Notice that these operators are relativized to the intervals determined
by the condition Rc. Other operators can be defined through abbreviations, such as

• FRc τ = ⊤URc τ (sometime in the future);

• GRc τ = ¬(FRc (¬τ)) (always in the future).

An axiomatization of MTL can be found in [Cha95]. The proof rules that relate
RETOOL and MTL are as follows:

(R1)

enabled(t) → r t ⊃ p0δ
∞q

t → r ∧ X=0q

Rule (R1) deals only with change, i.e. with the transitions performed by actions.
Therefore, it uses the delta operator with time bounds 0 and ∞. It states that t,
when taken, establishes q. Notice that the post-condition is established in the next
state, and that the transition does not take time.

(R2)

{h ⊃ ⊤0δ
∞(¬q) | h ∈ Γ − g} g ⊃ ⊤0δ

∞q

X=0q → g

Rule (R2) allows us to infer that an action occurs by observing that a given
proposition was set to true when only that action can establish it as a post-condition.
In a way, this rule “completes” R1.

(R3)

p→ ¬enabled(t) t ⊃ ⊤xδ
∞⊤

p→ G≤x¬t

Rule (R3) establishes safety properties by using the lower bound. If p holds and
implies that t is not enabled, then we know that at least x units of time have to elapse
before t can be taken, where x is a lower bound for t. The temporal operator G≤x

means “for the next x time units”.
(R4)

{p→ [h]p | h ∈ Γ − g} p→ enabled(g) g ⊃ ⊤0δ
y⊤

p → F≤yg

Rule (R4) establishes liveness properties through the use of the upper bound. If p
holds and is an invariant for all actions other than g, and p implies that g is enabled,
then we know that g will be taken before y units of time, where y is an upper bound
for g.
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Figure 2: An edge in a TATD

(R5)

{Γ − g} {Γ − h}
| |

¬g ∨ ¬h φ φ

φ

Rule (R5) asserts that if the same conclusion φ is obtained assuming that a certain
action g does not happen as well as assuming that a certain other action h does not
happen, and, if those actions never happen together, then we obtain the mentioned
conclusion. This is the rule that allows deriving conclusions from non-interfering
actions.

3. The Concrete Model

In order to allow the software designer to represent a real-time object-oriented
system in a manner suitable for formal reasoning, Timed Action Transition Diagrams
(TATDs) are introduced as concrete models. This section defines such entities and
presents a mapping from TATDs to RETOOL theories.

3.1 Timed Action Transition Diagrams

Given a set A of attribute symbols and a set Γ of action symbols, a Timed Action
Transition Diagram (TATD) is a finite directed graph. Each edge in the graph is
labelled by a guarded instruction c → g, where g ∈ Γ and c is a state proposition,
and by a pair [l, u], where l ∈ TIME and u ∈ TIME ∪{∞} and l ≤ u.

Each node in the graph represents a location of the flow of control of an object
in the system. An edge between two locations Lj and Lk of object i is pictorially
represented as in Figure 2.
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3.2 Mapping TATDs onto RETOOL Theories

In order for the formal plane to reason about the behavior of the system, the TATD
corresponding to each object is mapped onto a RETOOL theory. The integration of
the behavior of several objects is achieved by means of colimits in the appropriate
category of RETOOL theories (CRETOOL), following a well-known approach described
by [BLM97] and [FM92] and illustrated in section 5..

Given a TATD over the set Ad of attribute symbols and the set Γ of action symbols,
we produce a set of RETOOL formulae over the following attribute symbols:

A = Ad ∪ {atL0, atL1, ..., atLn−1}

where Li, 0 ≤ i < n are the n locations in the TATD.
The RETOOL theory for a given TATD consists of the following formulae:

atLi → (
∧

i6=j

¬atLj)

(At each state, the flow of control is at most in one location.)

[ ]((
∧

0≤i<n

¬atLi) ∧ Θ)

(The initial state is the one satisfying a set Θ of initial conditions. In the initial state,
the flow of control is not yet in any location Li.)

For each action symbol g labelling edges in the TATD such as the ones in Figure
3, the folowing formulae are produced:

g ⊃ ((atLi1 ∧ c1) ∨ (atLi2 ∧ c2) ∨ ... ∨ (atLik
∧ ck))

lδ
u

(atLj1 ∨ atLj2 ∨ ... ∨ atLjk
)

enabled(g) → ((atLi1 ∧ c1) ∨ (atLi2 ∧ c2) ∨ ... ∨ (atLik
∧ ck))

atLi1 ∧ c1 → [g]atLj1

atLi2 ∧ c2 → [g]atLj2

...

atLik
∧ ck → [g]atLjk

Finally, the functionality of the actions must be provided through formulae of the
form:

p1 → [g]q1
p2 → [g]q2
...

pn → [g]qn
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Figure 3: Edges labelled by g in a TATD

4. A Short Example

Consider a machine that can sell cakes and cigars. After it accepts a coin, it is
ready to deliver either a cake or a cigar within 10 time units. After the machine
delivers the product, it is reset in at most 1 time unit.

The following set of propositional variables will be used for representing the state:

OFF, ON, Waiting, DeliveredCake, DeliveredCigar

The following actions represent the possible activities of the machine:

begin, coin, reset, cake, cigar

The behavior of the machine is specified as follows:

1. begin ⊃ OFF 1δ
∞ ON

2. coin ⊃ ON 1δ
∞ Waiting

3. cake ⊃Waiting 1δ
10 DeliveredCake

4. cigar ⊃Waiting 1δ
10 DeliveredCigar
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5. reset ⊃ DeliveredCigar 0δ
0 ON

6. reset ⊃ DeliveredCake 0δ
0 ON

7. OFF ↔ enabled(begin)

8. ON ↔ enabled(coin)

9. Waiting ↔ enabled(cake)

10. Waiting ↔ enabled(cigar)

11. (DeliveredCigar ∨DeliveredCake) ↔ enabled(reset)

We omit the axioms that specify that only one propositional variable is true at a
time.

The proof rules defined in section 2.4 allow us to derive the following properties:

ON → ¬F≤2 (cake) ∧ ¬F≤2 (cigar)(4.1)

Waiting → F≤10 (cake ∨ cigar)(4.2)

In order to prove (4.1), we observe that

ON → ¬Waiting and ¬Waiting → (¬enabled(cake) ∧ ¬enabled(cigar))

Thus, from

cake ⊃ ⊤1δ
∞⊤ and cigar ⊃ ⊤1δ

∞⊤

we derive

ON → G≤1 ¬cake and ON → G≤1 ¬cigar

respectively, using R3 in both cases. By MTL reasoning, we derive ON →
G≤2 ¬cake and ON → G≤2 ¬cigar. Recall that G≤2 ¬p = ¬F≤2 p, by defi-
nition.

Let Γ be the set of all actions present in the specification. In order to prove (4.2),
first we observe that

∀g ∈ ((Γ − {cake})− {cigar}) : Waiting → [g]Waiting(4.3)

Waiting → enabled(cigar)(4.4)

cigar ⊃ ⊤1δ
10⊤(4.5)
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Thus, by applying rule R4 to (4.3), (4.4), and (4.5), we can conclude

Waiting → F≤10 cigar

and hence
Waiting → F≤10 (cigar ∨ cake)

Similarly we have

∀g ∈ ((Γ − {cigar}) − {cake}) : Waiting → [g]Waiting(4.6)

Waiting → enabled(cake)(4.7)

cake ⊃ ⊤1δ
10⊤(4.8)

Thus, by applying rule R4 to (4.6), (4.7), and (4.8), we can conclude

Waiting → F≤10 cake

and hence
Waiting → F≤10 (cigar ∨ cake)

Thus, by using R5 and ¬cake ∨ ¬cigar, we reach the desired conclusion.

5. Composing RETOOL Theories

This paper has contended that the behavior of a real-time reactive system can
be represented by a timed action transition diagram or, in a more abstract fashion,
by a RETOOL theory. However, the examples and ideas presented so far have been
restricted to cases where the behavior of only one object (or process) is described. In
order to achieve modularity, a highly desirable feature in software architecture, we
would like to be able to apply the same logical framework both to the specification of
a single object and to the specification of complex systems formed by several objects.
More specifically, we would like to employ RETOOL to reason about the parallel
composition of objects.

It is through the use of Category Theory that this goal is to be achieved. [Gog89]
established the principle that “given a category of widgets, the operation of putting
a system of widgets together to form some super-widget corresponds to taking the
colimit of the diagram of widgets that shows how to interconnect them”. In our case,
the widgets are RETOOL theories, and this section illustrates how this principle can
be applied to construct theories describing the behavior of complex systems.§

The composition of specifications of processes using Category Theory has also
been explored in [BLM97, FM92].

§Only elementary notions of Category Theory are used in this section. A basic reference such as
[BW90] can provide the necessary definitions.
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5.1 CRETOOL – The Category of RETOOL Theories

First of all, we must define an appropriate category CRETOOL of RETOOL theo-
ries. Objects in this category will be represented by RETOOL theory presentations.
A RETOOL theory presentation is a triple (A,Γ,∆), where A is the set of attribute
symbols, Γ is the set of action symbols and ∆ is the set of axioms of the theory. We
will refer to the pair (A,Γ) as the signature of the theory.

Morphisms in CRETOOL will be defined as signature morphisms which preserve
theoremhood. More precisely, given two theory presentations T1 = (A1,Γ1,∆1)
and T2 = (A2,Γ2,∆2), a signature morphism σ is a pair (σA, σΓ) of mappings
σA : A1 −→ A2 and σΓ : Γ1 −→ Γ2. In other words, a signature morphism will
simply map the attribute symbols of one theory to attribute symbols of the other,
and the action symbols of one theory to action symbols of the other. When no ambi-
guity can arise, we will omit the subscripts of σ. Note that there are no constraints on
the definition of these mappings, which can be one-to-one and/or onto. However, not
all signature morphisms between the objects of CRETOOL will be taken as morphisms
of the category. We define below which signature morphisms will be the morphisms
of CRETOOL.

A signature morphism σ : (A1,Γ1) −→ (A2,Γ2) can easily be extended to a
mapping of state propositions, action terms and formulae as follows:

• σ(¬p) = ¬σ(p)

• σ(p → p′) = σ(p) → σ(p′)

• σ(plδ
uq) = (σ(p))lδ

u(σ(q))

• σ(t1 ⊃ t2) = (σ(t1)) ⊃ (σ(t2))

• σ(¬φ) = ¬σ(φ)

• σ(φ→ φ′) = σ(φ) → σ(φ′)

• σ([t]φ) = [σ(t)]σ(φ)

• σ([ ]p) = [ ]σ(p)

It is exactly those signature morphisms which preserve theorems that will be taken
as the morphisms of CRETOOL. More precisely, given two theories T1 = (A1,Γ1,∆1)
and T2 = (A2,Γ2,∆2), a morphism σ : T1 −→ T2 is a signature morphism σ :
(A1,Γ1) −→ (A2,Γ2) such that for all formulae φ, if ∆1 ⊢ φ then ∆2 ⊢ σ(φ).
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6

- T2
σ2

T1

σ1

Tc

Figure 4: Component theories T1 and T2 and a “communication channel” Tc

5.2 Pushouts in CRETOOL

The categorial mechanism which corresponds to the parallel composition of pro-
cesses is the pushout. Consider two theory presentations T1 and T2 which are to be
composed together. The details of this composition are determined by a third theory
presentation Tc and two morphisms σ1 : Tc −→ T1 and σ2 : Tc −→ T2.

Tc can be seen as a “communication channel” connecting certain attributes and
actions of T1 to certain attributes and actions of T2. In fact, the morphisms σ1

and σ2 force the identification of certain attribute symbols and action symbols of T1

with certain attribute symbols and action symbols of T2. Identified attribute symbols
will correspond to shared attributes, and identified action symbols will correspond to
synchronized (simultaneous) events.

More formally, if ac is an attribute symbol of Tc, and the morphisms σ1 and σ2

map ac to attribute symbols a1 of T1 and a2 of T2, respectively, then this means that
a1 and a2 correspond to one single, shared attribute of the parallel system represented
by T1 ||Tc

T2 (the parallel composition of theory presentations T1 and T2 according
to channel Tc).

Analogously, if gc is an action symbol of Tc, and the morphisms σ1 and σ2 map gc

to action symbols g1 of T1 and g2 of T2, respectively, then this means that g1 and g2
correspond to one single, joint action of the parallel system represented by T1 ||Tc

T2.
This situation is pictorially represented in figure 4.

A pushout of the diagram in figure 4 consists of a theory presentation T1 ||Tc
T2

together with two morphisms µ1 : T1 −→ T1 ||Tc
T2 and µ2 : T2 −→ T1 ||Tc

T2

satisfying the following conditions:

1. the diagram of figure 5 commutes; i.e., σ1;µ1 = σ2;µ2.

2. for every other T ′, µ′
1 and µ′

2 such that the diagram of figure 6 commutes, there
is a unique morphism µ : T1 ||Tc

T2 −→ T ′ such that µ1;µ = µ′
1 and µ2;µ = µ′

2.
This situation is shown in figure 7.
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-

-

6

T2
σ2

T1

σ1

Tc

µ1

µ2

T1 ||Tc
T2

Figure 5: Pushout
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-

-

6

T2
σ2

T1

σ1

Tc

µ′
1

µ′
2

T ′

Figure 6: Another commutative diagram
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Tc
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T1 ||Tc
T2

µ′
1

T ′

µ′
2

µ

Figure 7: Morphism µ is unique
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The intuition behind this construction can be summarized as follows: as the mor-
phisms in CRETOOL mean preservation of theoremhood, commutativity of the diagram
in figure 5 means that the (translations of) theorems of Tc specified by σ1 and σ2 are
preserved by T1 ||Tc

T2 in the same way; i.e., in T1 ||Tc
T2, T1 and T2 “share” Tc.

Furthermore, the uniqueness of morphism µ : T1 ||Tc
T2 −→ T ′ for all T ′ means

that T1 ||Tc
T2 is the “minimal” combination of T1 and T2 that respects the interaction

specified by Tc, σ1 and σ2.
Only the attribute symbols and action symbols which are the images of the symbols

in the signature of Tc must be identified in T1 ||Tc
T2. If T1 and T2 had other symbols

in common, they would be automatically renamed in the construction of the pushout.
This automatic “management of namespaces” is another attractive feature of the
categorial approach to system composition.

Of course, it remains to be verified that CRETOOL is finitely cocomplete, i.e., that
every finite diagram has a colimit, and hence pushouts will always exist. We do not
prove this here.

5.3 A Simple Example

Consider an automobile equipped with an automatic transmission engine. We will
take the braking mechanism to be one process, described by the TATD in figure 8
and the corresponding RETOOL theory Tb below. We will see the engine itself as
another process, extremely simplified to account only for the behavior of the (auto-
matic) clutch. This second process is represented by the TATD in figure 9 and the
corresponding theory Te below. Notice that while the brakes operate instantaneously,
the activation and deactivation of the clutch mechanism both have a minimal delay
of 1 time unit.

Tb = atb1 → ¬atb2
atb2 → ¬atb1
[ ](¬atb1 ∧ ¬atb2)
brake ⊃ atb10δ

∞atb2
release ⊃ atb20δ

∞atb1

Te = ate1 → ¬ate2
ate2 → ¬ate1
[ ](¬ate1 ∧ ¬ate2)
unlink ⊃ ate11δ

∞ate2
link ⊃ ate21δ

∞ate1

We will compose Tb and Te using a third theory, Tc, and morphisms σb and σe

(shown below) as the communication channel.
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&%
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&%
'$-

�
b1 b2

brake

[ 0, ∞ ]

[ 0, ∞ ]

release

Figure 8: TATD for the braking mechanism of an automobile

&%
'$

&%
'$-

�
c1 c2

unlink

[ 1, ∞ ]

[ 1, ∞ ]

link

Figure 9: TATD for the automatic clutch of the engine of an automobile

Tc = atc1 → ¬atc2
atc2 → ¬atc1
[ ](¬atc1 ∧ ¬atc2)
g ⊃ atc10δ

∞atc2
h ⊃ atc20δ

∞atc1

σb : Tc −→ Tb

atc1 7−→ atb1
atc2 7−→ atb2
g 7−→ brake

h 7−→ release

σe : Tc −→ Te

atc1 7−→ ate1
atc2 7−→ ate2
g 7−→ unlink

h 7−→ link

By computing the pushout as explained in the previous subsection, we produce
theory Tp, which represents the joint (parallel) behavior of the brakes and the clutch
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interacting together. As the pushout object is unique up to isomorphism, we are free
to rename the attributes and actions in Tp (as long, of course, as no new identifications
of symbols arise). Here, we simply choose the concatenation of parts of the names in
Tb and Te:

Tp = atb1e1 → ¬atb2e2
atb2e2 → ¬atb1e1
[ ](¬atb1e1 ∧ ¬atb1e2)
brakeunlink ⊃ atb1e11δ

∞atb2e2
releaselink ⊃ atb2e21δ

∞atb1e1

Notice that, in identifying action symbols brake and unlink, which had different
lower bounds, the stricter minimal delay (1, the lower bound of unlink) prevailed. A
similar situation occurred with release and link.

6. Concluding Remarks

The approach adopted for modeling real-time aspects (timed transition systems for
the object’s lifecycle specification) relies on an extension of Timed Transition Systems
and Timed Action Transition Diagrams as presented in [HMP92]. The extension
consists in working with a specificational level based on the use of action modalities
and the δ operator. The use of action names allows us to separate methods from
their functionality and, therefore, model their reactive and real-time aspects. Action
modalities are then used for specifying their functionality (pre/postconditions). The
δ operator refers to the necessary conditions and time bounds of actions. The Metric
Temporal Logic (MTL) of [Cha95] was extended with action terms as propositions
and related to their specification by several inference rules.

It was also illustrated how the integration of different objects in a system is sup-
ported. The framework for integration is based on the categorial approach presented
in [BLM97] and [FM92].

Work in progress includes the search for an automatic theorem-proving strategy
for the RETOOL/MTL combination and the application of this framework to different
fields, e.g. the design of hypermedia documents, in which real-time constraints also
occur naturally.
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