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Abstract. The development and use of ontologies may require users with no training in formal logic to handle complex concept
descriptions. To aid such users, we propose a new visualization framework called “model outlines”, where more emphasis is
placed on the semantics of concept descriptions than on their syntax. We present a rigorous definition of our visual language,
as well as detailed algorithms for translating between model outlines and the Description Logic ALCN . We have recently
conducted a usability study comparing model outlines and Manchester OWL; here, we report on its results, which indicate the
potential benefits of our visual language for understanding concept descriptions.
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1. Introduction

When working with formal ontologies, one often
needs to formally represent conditions for member-
ship in the defined classes. In this paper, we will call
such conditions concept descriptions, following the
Description Logic (DL) tradition [1].

Concept descriptions are important in many sce-
narios related to ontology development and use. For
example, DL reasoners perform logical inferences by
manipulating concept descriptions according to a spe-
cific deductive calculus. In many cases, users may be
interested not only in the answers provided by such
reasoners, but also in the chains of reasoning that led
to those answers. In order to understand such chains of
reasoning, users must be able to understand the mean-

1Work partially supported by research grant E-26/112.038/2008
from FAPERJ.

ing of the concept descriptions involved. This area of
study is referred to as proof explanation [17].

Another situation where concept descriptions play a
role is in ontology query languages [2]; for example,
in the DL Query Tab Protégé plugin [5], a concept de-
scription C is given to a reasoner, which then returns
items of information about C, such as all its instances,
named subclasses, superclasses and equivalent classes.

Because many users of formal ontologies have no
specific training in logic, the problem of representing
concept descriptions in a user-friendly fashion is an
important one, and many researchers have proposed
different ways of solving it: replacing logical sym-
bols with keywords in DL languages [12], automati-
cally generating natural language paraphrases of con-
cept descriptions [10], or using diagrammatic repre-
sentations [11,15].

As an example to make this discussion more con-
crete, consider the following concept description in
DL syntax (to be formally introduced in Sect. 2 below),
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which appears in [4], a paper about proof explanation:

∃hasChild.>

u ∀hasChild.

¬((∃hasChild.¬Doctor)

t (∃hasChild.Lawyer))

(1)

(This description represents individuals having one
or more children, such that these children, in turn, have
no children who are not doctors, and no children who
are lawyers.)

Diagrammatic representations of concept descrip-
tions have given rise to implementations of “visual”
ontology browsers. One such example is the visualiza-
tion tool GrOWL [16], which produces the diagram in
Figure 1 for the concept description in (1). As can be
seen, the diagram is essentially an abstract syntax tree,
which offers nonspecialist users little help in under-
standing the semantics of the description, especially
if those users are not familiar with the DL operators
“∃”, “∀”, “¬” and “t”. In fact, we have found this to
be a common phenomenon: many visualization frame-
works for concept descriptions are too faithful to the
syntax of the representation languages (e.g., DL), a
feature which may prevent users from grasping the se-
mantics of the concept descriptions.

This paper discusses model outlines, which depart
from the syntax-based tradition in that they consist of
diagrams characterizing the class of models of a given
concept description — here, we use the term “model”
in the logical sense; see, e.g., [1]. The model outline
for (1), produced after applying a carefully defined set
of simplification rules to the original concept descrip-
tion (see Section 4), is presented in Figure 2. By ad-
hering to some simple graphical conventions, such as
the convention that figures drawn in dashed stroke rep-
resent elements whose existence is optional, a user can
understand that the concept description represents a set
of individuals having at least one child and having as
grandchildren (if any) only doctors and non-lawyers.

Our previous papers [6,8] introduced the first ver-
sion of model outlines and compared them to natural
language paraphrases of concept descriptions. Since
then [7], we have reformulated the visual language so
as to make it more intuitive (e.g., including optional la-
beled clusters, rendering cardinality restrictions as text
and fine-tuning the placement of inner boxes). We have
also altered the conversion algorithms to conform to
the new visual language.

Fig. 1. Diagram produced by GrOWL [16] (manually laid out)

Fig. 2. Model outline for description (1)

Most importantly, we have conducted a first usabil-
ity test of model outlines, with promising results. Users
from different backgrounds were shown concept de-
scriptions in two formalisms: our model outlines and
Manchester OWL (a textual notation for DL which
uses keywords for logical symbols, infix notation for
restrictions, syntax highlighting and indentation in or-
der to make descriptions more readable for nonspecial-
ists — see [12]). We then tested ease of understanding
for each formalism by asking the users questions about
the concept descriptions shown.

This paper is structured as follows: Sect. 2 presents
the syntax of model outlines for the Description Logic
ALCN , at the concrete (token) and at the abstract
(type) levels, as is recommended for diagrammatic
systems [14]; Sect. 3 defines the precise semantics of
model outlines, in the form of algorithms that translate
from model outlines to ALCN concept descriptions;
Sect. 4 discusses the translation ofALCN concept de-



F.N. do Amaral / Model Outlines: a Visual Language for DL Concept Descriptions 3

DL Manchester Meaning
C,D→ A A I(A)

| > THING ∆
| ⊥ NOTHING ∅
| ¬C NOT C ∆− I(C)
| C uD C AND D I(C) ∩ I(D)
| C tD C OR D I(C) ∪ I(D)
| ∀R.C R ONLY C {a ∈ ∆ | ∀b.[(a, b) ∈ I(R)⇒ b ∈ I(C)]}
| ∃R.C R SOME C {a ∈ ∆ | ∃b.[(a, b) ∈ I(R) ∧ b ∈ I(C)]}
| ≤ n.R R MAX n {a ∈ ∆ | #{b | (a, b) ∈ I(R)} ≤ n}
| ≥ n.R R MIN n {a ∈ ∆ | #{b | (a, b) ∈ I(R)} ≥ n}
| = n.R R EXACTLY n {a ∈ ∆ | #{b | (a, b) ∈ I(R)} = n}

Fig. 3.ALCN concept descriptions and their meanings

scriptions to model outlines; Sect. 5 reports and ana-
lyzes the results of the usability test; Sect. 6 consid-
ers some specific aspects and possible applications of
our visual language; Sect. 7 contains our concluding
remarks; an appendix provides a proof of correctness
of the translation algorithms.

2. Syntax of model outlines

We consider the Description Logic ALCN , whose
language of concept descriptions is specified in Fig-
ure 3, both in the DL syntax and in Manchester OWL.
(Work is under way to define model outlines for more
expressive languages, such as the concept language un-
derlying OWL 2 DL [13].) In Figure 3, A stands for a
class name (i.e., an atomic concept term), R stands for
a property name (i.e., an atomic role term), and n rep-
resents a natural number. The (set-theoretical) mean-
ing of these descriptions is given by a nonempty set
∆ (the universe or domain) along with an interpreta-
tion I mapping each concept description C to a set
I(C) ⊆ ∆, and each role term R to a binary relation
I(R) ⊆ ∆ × ∆. An interpretation I must map each
description in the first two columns to the set in the
third column. #S denotes the cardinality of a set S.
A literal is >, or ⊥, or a description of the form A or
of the form ¬A, where A is an atomic concept term.

The concrete syntax of model outlines defines their
physical representation. What follows is an informal
definition.

A model outline contains clusters (solid or dashed),
arrows (solid or dashed) and boxes. We follow the
symbology established by the Protégé1 user interfaces

1http://protege.stanford.edu

in representing individuals as dark-colored diamonds.
When cardinality restrictions are not present, the num-
ber of individuals satisfying certain conditions is not
important; therefore, so as not to mislead users into
thinking that only one individual is allowed in a certain
situation, we show a little cluster of diamonds.

The root of the model outline is a solid cluster. A
cluster may have an optional class label below it, con-
sisting of a disjunction or of a conjunction of literals.
So may a box. A box may also have an optional cardi-
nality label below it, which may be of the form “(from
m thru n)”, “(m or more)”, or “(exactly m)”, with m,n
natural numbers, m < n. The source of an arrow may
be a cluster or a box. The target of an arrow is always
a box. Each box is the target of exactly one arrow. An
arrow must have a role label above it, consisting of a
role name. A box contains one or more clusters, ac-
cording to constraints that we do not include in this
informal description, but which will be made explicit
in the abstract syntax below. A box may also contain
at most one “among-which” inner box, which in turn
contains one or more clusters, all of them solid. Inner
boxes are never the source of arrows. A box or a cluster
may have a case widget above it.

Figure 4 shows an example model outline. The tar-
get box of the arrow labeled “hasAttendance” has
both a class label (“Enrolled”) and a cardinality la-
bel (“from 10 to 50”). The target box of the arrow la-
beled “hasAttendance” also has an “among-which” in-
ner box. This model outline does not have case wid-
gets.

At this point, the reader should test the appropriate-
ness of the choice of visual presentation of the com-
ponents of model outlines. We suggest that the reader
(without any further knowledge of the meaning of
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Fig. 4. Example model outline

these components) formulate a natural language de-
scription of the constraints imposed upon the individ-
uals of class GraduateCourse at the root of the out-
line. If the reader is knowledgeable in DL syntax, the
reader should also produce anALCN concept descrip-
tion. In Sect. 3 below, we explain the precise meaning
of this model outline, and in Sect. 4 we show the steps
involved in its construction.

Case widgets indicate alternatives (i.e., disjunction).
If a cluster or a box has a case widget above it, the user
may browse the different cases interactively, one case
at a time, by clicking on the triangles on either side of
the case widget.

In Figure 5, for example, there are 4 cases alto-
gether, specifying objects that satisfy one or more of
the following conditions:

1. Textbooks having all extras (if any) translated to
Portuguese (and possibly other languages), or

2. Textbooks having all extras (if any) in Audio for-
mat (and possibly other formats), or

3. ClassNotes having at least one Free copy in PDF
format (and possibly other formats, and other
copies), or

4. ClassNotes having at least one Low-priced copy
(and possibly other copies).
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Fig. 5. Example model outline with case widgets

More formally, the model outline in Figure 5 corre-
sponds to the description

[Textbook u ∀hasExtras.

(∃hasTranslation.Portuguese t

∃hasFormat.Audio)] t

{ClassNotes u ∃hasCopy.

[(Free u ∃hasFormat.PDF) t

(∃hasPrice.Low u ∀hasPrice.Low)]}

Note that there are textual elements in the concrete
syntax of model outlines: labels associated to arrows,
clusters and boxes. These textual elements, however,
are kept simple so as not to compete with the diagram-
matic elements for the user’s attention.

An arrow label consists solely of a role name. Clus-
ter and box labels are either conjunctions or disjunc-
tions of literals (box labels are prefixed by the word
“ALL” so as to emphasize that the label serves as
a universal restriction). Cardinality restrictions are of
one of three forms: “EXACTLY n”, “n OR MORE”,
“FROM m THRU n”.

We believe that these textual expressions are sim-
ple enough to be understood by a nonspecialist user; in
particular, as cluster and box labels never mix disjunc-
tion and conjunction, the logical complexity of labels
is kept in check. Furthermore, we see no substantial
gain in trying to present the information in these labels
in diagrammatic form (e.g., as abstract syntax trees).
As we asserted in [6], a previous paper by us compar-
ing textual and diagrammatic representations of con-
cepts, “logocentric [i.e., textual] and diagrammatic ap-
proaches to the representation of concepts are not mu-
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〈outline〉 → 〈solidClstrCases〉
〈solidClstrCases〉 → ( cases 〈solidCluster〉+ )
〈solidCluster〉 → ( cluster solid 〈classLabel〉 ( 〈arrow〉? ) )
〈classLabel〉 → ( ) | ( 〈literal〉 )

| ( and 〈literal〉 〈literal〉+ ) | ( or 〈literal〉 〈literal〉+ )
〈literal〉 → 〈conceptName〉 | ( not 〈conceptName〉 )
〈arrow〉 → ( arrow solid 〈roleName〉 ( 〈intrvl〉? ) 〈solidBoxCases〉 )

| ( arrow dashed 〈roleName〉 ( 〈intrvl〉? ) 〈dashedBoxCases〉 )
〈intrvl〉 → ( 〈number〉 〈number〉 ) | ( 〈number〉 infty )

〈solidBoxCases〉 → ( cases 〈solidBox〉+ )
〈solidBox〉 → ( box 〈classLabel〉 ( 〈solidClstrCases〉+ ) 〈opt〉 ( 〈arrow〉? ) )

〈opt〉 → ( 〈unlabeledCluster〉 ) | ( 〈innerBox〉? ( 〈dashedClstrCases〉? ) )
〈unlabeledCluster〉 → ( cluster dashed ( ) ( ) )

〈innerBox〉 → ( innerBox 〈solidClstrCases〉+ )
〈dashedBoxCases〉 → ( cases 〈dashedBox〉+ )

〈dashedBox〉 → ( box 〈classLabel〉 ( 〈snglDashedCluster〉 ) ( ) ( 〈arrow〉? ) )
〈snglDashedCluster〉 → ( cases ( cluster dashed 〈classLabel〉 ( 〈arrow〉? ) ) )
〈dashedClstrCases〉 → ( cases 〈dashedCluster〉+ )
〈dashedCluster〉 → ( cluster dashed 〈classLabel〉 ( 〈arrow〉? ) )

Fig. 6. Abstract, formal syntax forALCN model outlines

tually exclusive; in fact, since human beings are flu-
ent in both modes of communication (verbal and pic-
torial), we believe these modes can complement each
other to great benefit.”

If model outlines are used to help construct concept
descriptions, a software tool can provide guidance to
the user, ensuring that labels are filled out according to
the syntactic restrictions explained above. For exam-
ple, a graphical interface can present the user with a
list of atomic class names and options to negate chosen
names of the list and to join them in a conjunction or
in a disjunction.

The abstract syntax of a model outline is formally
defined as a LISP-style list generated by the gram-
mar in Figure 6, which is in extended BNF notation.
The abstract syntax of a model outline is intended to
provide a structural representation of the components
of the diagram, without regard for graphical details
such as position, color, size or orientation. As an ex-
ample, Figure 7 contains the list representation of the
model outline in Figure 5. Note that the abstract syn-
tax is not meant for human consumption, but rather for
automatic processing by algorithms such as the ones
presented in the next section.

3. Semantics of model outlines

The appearance of the components of a model out-
line follows some (hopefully intuitive) graphical con-
ventions:

Individuals are represented by clusters of diamonds.
The presence of a cluster (as opposed to a single dia-
mond) emphasizes the idea that one or more individu-
als may appear in a given situation. E.g., in Figure 4,
the graduate courses in question may have as lecturers
more than one tenured department professor holding a
CompSci or Math PhD degree and supervising at least
one graduate student from a total of 2 or more indi-
viduals; the presence of the dashed cluster in the target
box of the arrow labeled “supervises” indicates that the
professors may also supervise individuals that are not
graduate students (e.g., undergraduates).

Clusters of solid diamonds represent individuals that
must exist. In Figure 4, it is mandatory that the grad-
uate courses in question have as lecturer at least one
tenured department professor holding a CompSci or
Math PhD degree and supervising at least one graduate
student from a total of 2 or more individuals. Likewise,
the attendance must include students and graduate stu-
dents.

Clusters of dashed diamonds represent optional in-
dividuals. If the cluster is labeled or has outgoing ar-
rows, the individuals must belong to the corresponding
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(cases (cluster solid (Textbook)
((arrow dashed (hasExtras) ()

(cases (box () (cases (cluster dashed ()())) ()
(arrow solid (hasTranslation) ()
(cases (box () (cases (cluster solid (Portuguese) ()))

(cluster dashed ()()) ()))))
(box () (cases (cluster dashed ()())) ()
(arrow solid (hasFormat) ()
(cases (box () (cases (cluster solid (Audio) ()))

(cluster dashed ()()) ()))))))))
(cluster solid (ClassNotes)
((arrow solid (hasCopy) ()

(cases (box ()
(cases (cluster solid (Free)

(arrow solid (hasFormat) ()
(cases (box () (cases (cluster solid (PDF) ()))

(cluster dashed ()()) ()))))
(cluster solid ()
(arrow solid (hasPrice) ()
(cases (box () (cases (cluster solid (Low) ()))

()())))))
(cluster dashed ()()) ()))))))

Fig. 7. Abstract syntax for model outline in Fig. 5

class (e.g., “Guest” in Figure 4). If the cluster is un-
labeled, the individuals may belong to any class, sub-
ject to the constraints stipulated by the label and the
outgoing arrows of the outer box where the cluster is
located (e.g., in Figure 4, the unlabeled cluster in the
“hasLecturer” box represents lecturers that do not have
to be tenured department professors, but that must hold
a CompSci or Math PhD degree).

Arrows represent relationships. Arrows may origi-
nate from clusters or from boxes. Given a role name R,
each cluster or box may have at most one outgoing ar-
row labeled by R.

As previously indicated, box labels and arrows orig-
inating from boxes represent constraints that must be
satisfied by all individuals corresponding to clusters in
the box. E.g., in Figure 4, all individuals attending the
graduate courses in question must belong to class “En-
rolled”.

The absence of a dashed cluster in a box means that
all the individuals represented in the box must belong
to the classes specified by their respective labels and
to the class specified by the box label and arrows (if
present). This is evident in Figure 4, where it is re-
quired that the lecturers hold a PhD degree only in
CompSci or Math (a rather exclusivist and unfair re-
quirement, but this is only an example).

Dashed boxes, always the target of dashed arrows,
always contain a dashed cluster, representing optional
individuals. In Figure 4, the graduate courses in ques-
tion may or may not involve the use of (up to 2) de-
partment labs.

“Among which” inner boxes contain clusters repre-
senting individuals that belong to subclasses of one or
more classes specified in the outer box. In Figure 4, the
attendance of the graduate courses in question consists
of students, some of which are required to be graduate
students. Optionally, guests may attend.

The above remarks are included here only for ped-
agogical purposes. In fact, we define the precise se-
mantics of model outlines by means of the DESCR pro-
cedure, which, when given a model outline C (in ab-
stract syntax), yields the ALCN concept description
taken as the meaning of C. The DESCR procedure calls
BOXDESCR to build the concept description denoted
by a box. Algorithm 1 shows both procedures in pseu-
docode.

The reader should refer to the grammar in Figure 6
for the structure of the lists that the algorithms ma-
nipulate. These algorithms can be modified to pro-
duce more legible output; here, their only purpose is to
serve as the precise semantics of model outlines. When
given as input the model outline in Figure 2, e.g., algo-
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DESCR(C) � C has the form ( cases C1 · · ·Cm )
1 Descr ← ⊥
2 for each Ci in C1, . . . , Cm � Ci has the form ( cluster S L ( A1 · · ·An ) )
3 do if L = ( )
4 then Case ← >
5 else if L = ( NOTHING ) then Case ← ⊥ else Case ← L
6 for each Aj in A1, . . . , An

7 do Case ← Case u BOXDESCR(Aj)
8 Descr ← Descr tCase
9 return Descr

BOXDESCR(A) � A has the form ( arrow S RN ( I1 · · · In ) ( cases B1 · · ·Bm ) )
1 BDescr ← ⊥
2 if n = 0 � No cardinality restrictions
3 then Card ← >
4 else Card ← ⊥
5 for each Ij in I1, . . . , In � Ij is “interval” of the form ( X Y )
6 do if Y = infty
7 then Card ← (Card t ≥ X.RN )
8 else Card ← (Card t (≥ X.RN u ≤ Y.RN ))
9 for each Bi in B1 · · ·Bm � Each box case Bi has the form ( box BL ( C1 · · ·Cp ) Opt ( A′

1 · · ·A′
q ) )

10 do Universal ← ⊥; Existentials ← >
11 for each Cj in C1, . . . , Cp � Solid cluster cases
12 do Universal ← Universal t DESCR(Cj)
13 if Cj has the form ( cluster solid . . . )
14 then Existentials ← Existentials u ∃RN .DESCR(Cj)
15 if Opt contains ( innerBox C′

1 · · ·C′
r )

16 then for each C′
j in C′

1, . . . , C
′
r

17 do Existentials ← Existentials u ∃RN .DESCR(C′
j)

18 if Opt contains ( cluster dashed ( ) ( ) )
19 then Universal ← >
20 if Opt contains ( cases C′′

1 · · ·C′′
s ) � Optional clusters

21 then for each C′′
j in C′′

1 , . . . , C
′′
s

22 do Universal ← Universal t DESCR(C′′
j )

23 Universal ← ∀RN .(Universal)
24 if BL = ( )
25 then BCase ← Universal u Existentials
26 else BCase ← ∀RN .BL u Universal u Existentials
27 for each A′

j in A′
1, . . . , A

′
q � Box arrows

28 do BCase ← BCase u ∀RN .BOXDESCR(A′
j)

29 BDescr ← BDescr tBCase
30 return Card uBDescr

Algorithm 1. Conversion from model outlines to ALCN

rithm DESCR returns the following description, which
is equivalent to (1):

⊥ t {> u ∀hasChild.(⊥ t⊥ t>) u > u

∃hasChild.(⊥ t>) u ∀hasChild.[> u

(⊥ t ∀hasChild.(⊥ t (Doctor u ¬Lawyer)))]}

The remarks below will help the reader follow the
code of DESCR and BOXDESCR in Algorithm 1:

– When DESCR(C) is called, C is a list containing
a collection of cluster cases. Each cluster case Ci

is processed by the loop in lines 2–8. In line 9,
the disjunction of the descriptions corresponding
to the cluster cases is returned.
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– In DESCR, each cluster case Ci has its label pro-
cessed (lines 3–5) and its collection of arrows sent
to BOXDESCR (line 7). The conjunction of the
descriptions corresponding to those label and ar-
rows is stored in variable Case .

– Procedure BOXDESCR is responsible for process-
ing the arrow represented by the argument A and
all the box cases that the arrow points to.

– In BOXDESCR, lines 2–8 handle the cardinality
restrictions (if any) associated to the arrow.

– In BOXDESCR, the loop in lines 9–29 handles
each box case Bi that the arrow points to.

– In the loop, variable Universal will store a de-
scription of the form ∀R.D. At first, D will be a
disjunction of all the descriptions corresponding
to the solid cluster cases in the box (line 12).

– However, if there is an unlabeled dashed cluster
in the box, then there is no universal restriction
corresponding to the box (based on the clusters in
the box, that is), and Universal gets > (line 19).

– If there are labeled dashed clusters in the box
(which precludes the unlabeled dashed cluster
mentioned in the previous remark — see gram-
mar in Figure 6), the descriptions corresponding
to such clusters will also be included in the dis-
junction stored in Universal (line 22).

– In the loop, variable Existentials will hold a con-
junction of descriptions, each one of the form
∃R.D. These concept descriptions originate from
the solid clusters in the box (line 14) and from
the solid clusters in the “among which” inner box
(line 17).

– Finally, BOXDESCR will process the box label
(lines 24–26), and the box arrows (lines 27–28).

4. Constructing model outlines

In [8] we presented a first algorithm for translat-
ing ALCN concept descriptions into model outlines.
In this paper, we incorporate some important changes
to the algorithm (e.g., to account for labeled optional
clusters) and give a more informal explanation of the
main steps involved in such a translation, using as a
working example the concept description that origi-
nated the model outline in Figure 4.

Given an ALCN concept description C, we start
by converting C to modified disjunctive normal form
(mDNF), applying simplification rules in the process.
A concept description is in mDNF if it fits the pattern

D1 t . . . tDn

where each disjunct Di is a conjunction of the form

C1 u · · · u Cp

where each conjunct Cj is either a literal, or a collec-
tion of “intervals” of natural numbers (whose upper
bound may be∞) associated to a role R, or a descrip-
tion of the form ∀R.C ′ or of the form ∃R.C ′, where
C ′ is itself in mDNF.

The modification is in the way number restrictions
are represented: using appropriate rewrite rules, any
conjunction of cardinality restrictions over a role Ri

can be converted to a collection of “intervals” of natu-
ral numbers; for role R, the interval [m,n] represents
the constraint (≥ m.R u ≤ n.R). Likewise, [m,m]

represents (= m.R), and [0,m] represents (≤ m.R),
and [m,∞] represents (≥ m.R).

To each Di we then apply the simplification rule

∀R.C1 u . . . u ∀R.Cn � ∀R.(C1 u . . . u Cn)

As a result, we obtain C ′, which is a disjunction D′
1 t

. . . tD′
n, where each D′

i can be written as

L1 u . . . u Lm u C1 u · · · u Cp

where each Li is a literal, and each Cj can be written
as

∀R.F u ∃R.G1 u . . . u ∃R.Gq uK

where F and all the Gi are in mDNF and K is a collec-
tion of intervals of natural numbers representing cardi-
nality restrictions over role R. Any (or all) of these el-
ements may be absent. Note that we have grouped the
conjuncts according to the role R they refer to. Later,
when the model outline is built, each of these groups
will originate an arrow labeled by R (this is why at
most one arrow labeled by R may originate from any
given cluster or any given box).

Following these guidelines, the simplified mDNF of
the concept description corresponding to the example
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model outline in Figure 4 is found to be

GraduateCourse (2a)

u ∀hasLecturer. (2b)

[∀holdsPhDIn.(CompSci tMath) (2c)

u ∃holdsPhDIn.(CompSci tMath)] (2d)

u ∃hasLecturer.(DeptProfessor u Tenured (2e)

u ∃supervises.GradStudent (2f)

u {[2,∞]}.supervises) (2g)

u {[2, 2]}.hasLecturer (2h)

u ∀hasAttendance.[(Student u Enrolled) (2i)

t (Guest u Enrolled)] (2j)

u ∃hasAttendance.Student (2k)

u ∃hasAttendance.GradStudent (2l)

u {[10, 50]}.hasAttendance (2m)

u ∀usesLab.(DeptLab u ¬Closed) (2n)

u {[0, 2]}.usesLab (2o)

Note how the constraints have been grouped by the
roles they act upon. Note also how the cardinality con-
straints in lines (2g), (2h), (2m) and (2o) have been
written with (singleton) collections of intervals of nat-
ural numbers.

Two transformations must be effected before the
model outline can be built.

The first one concerns lines (2c)–(2d), where the set
of objects related to the lecturers through holdsPhDIn
is closed: i.e., the lecturers must hold some PhD degree
in CompSci or Math and only PhD degrees in CompSci
or Math.

The algorithm detects such a closure whenever it
finds conjuncts of the form

∀R(C1 t · · · t Cn) u ∃R.C1 u · · · u ∃R.Cn

Here, we have n = 1 and C1 = CompSci t Math.
Then, to indicate the closure, the algorithm refrains
from adding a dashed, unlabeled cluster to the target
box of the holdsPhDIn arrow (see Figure 4).

The second transformation is similar: in lines (2i)–
(2l), we can see there is some sort of closure related to
the role hasAttendance, but the situation is more com-
plicated. In fact, this is the general case, which also

includes the first transformation. Whenever the con-
juncts for role R are of the form

∀R[(C1 uD) t · · · t (Cn uD)

t (Cn+1 uD) t · · · t (Cn+p uD)]

u ∃R.C1 u · · · u ∃R.Cn u ∃R.F1 u · · · u ∃R.Fq

where D is a conjunction (with D = > as the trivial
case) it proceeds as follows:

– Solid clusters for C1, . . . , Cn are created in the
main target box for the R-arrow.

– If D is a conjunction of literals, then the main
target box for the R-arrow gets D as a label. If
D = >, this label is not shown.

– If D is not a conjunction of literals (i.e., if one of
the conjuncts is not a literal), then the main tar-
get box for the R-arrow gets the literal conjuncts
as a label and the nonliteral conjuncts as arrows
originating from the box.

– The main target box for the R-arrow gets an
“among which” inner box containing solid clus-
ters for F1, . . . , Fq .

– Dashed clusters for Cn+1, . . . , Cp are created in
the main target box for the R-arrow.

In our example description, in lines (2i)–(2l), we
have that n = 1, and C1 = Student, and D =
Enrolled, and p = 1, and C2 = Guest, and q = 1, and
F1 = GradStudent.

Algorithms 2–4 show the detailed pseudocode for
converting an ALCN concept description C in mod-
ified DNF to the abstract syntax of its corresponding
model outline. Next, we present remarks about the be-
havior of each procedure in the algorithms.

In order to build the entire model outline for an
ALCN concept description C, one should call the pro-
cedure as BUILDCLUSTERCASES(solid, C).

The remarks below will help the reader follow the
code of BUILDCLUSTERCASES in Algorithm 2:

– Lines 1–8 treat the base cases, where the descrip-
tion in modified DNF is >, ⊥, a disjunction of
literals, or a conjunction of literals, respectively.

– In line 2, this piece of abstract syntax should be
rendered visually in such a way as to make it clear
that C is inconsistent (i.e., C denotes the empty
set).

– If the algorithm does not exit before or at line 8,
then we know C is of the form L1 t · · · t Lm t
D1 t · · · tDn, with m ≥ 0, n ≥ 1, where each
Li is a literal, and each Di is a nonliteral.



F.N. do Amaral / Model Outlines: a Visual Language for DL Concept Descriptions 11

BUILDCLUSTERCASES(stroke, C)

1 if C = ⊥
2 then return ( cases ( cluster stroke ( NOTHING ) ( ) ) )
3 if C = >
4 then return ( cases ( cluster stroke ( ) ( ) ) )
5 if C = L1 t · · · t Ln � A disjunction of literals
6 then return ( cases ( cluster stroke ( OR L1 · · ·Ln ) ( ) ) )
7 if C = L1 u · · · u Ln � A conjunction of literals
8 then return ( cases ( cluster stroke ( AND L1 · · ·Ln ) ( ) ) )
9 � From here on, C is of the form L1 t · · · t Lm tD1 t · · · tDn, with m ≥ 0, n ≥ 1,

10 � all of the Li literals, and all of the Di nonliterals
11 cases ← ( cluster stroke ( OR L1 · · ·Lm ) ( ) )
12 for each Di in D1 · · ·Dn

13 �Di is of the form L1 u · · · u Lm u C1 u · · · u Cp, with m+ p > 0
14 do classLabel ← ( AND L1 · · ·Lm )
15 arrows ← ( )
16 for each Cj in C1 · · ·Cp

17 do arrows ← arrows + BUILDARROW(Cj)
18 cases ← cases + ( cluster stroke classLabel arrows )
19 return ( cases cases )

Algorithm 2. Conversion from ALCN to model outlines: BUILDCLUSTERCASES

– Line 11 gathers all the literals in L1 t · · · t Lm

into one single case.
– The loop in lines 12–18 produces a case rooted

in the present cluster for each of the remaining
disjuncts Di, each of which is of the form

L1 u · · · u Lm u C1 u · · · u Cp

subject to all of the following conditions:

∗ m + p > 0 (i.e., there must be at least
one conjunct; otherwise, C would be>, and
would have been treated in one of the base
cases of the algorithm).
∗ If p = 0 then m ≥ 2 (i.e., if there are only

literals in the conjunction, there must be
more than one literal; otherwise, Di would
be a literal, and would have been treated in
line 11 above, which gathers all literals into
a single case).

– In line 14, if m = 0, then classLabel should be
empty. If m = 1 then, it should get L1, with no
AND.

– Now, each Cj consists of a conjunction of all re-
strictions over a single role R, including cardinal-
ity restrictions.

– Then, in the loop consisting of lines 16–17, each
Cj gives rise to an arrow leaving the present case,

and in line 18 the present case is added to the set
of cases associated to the present cluster.

Each arrow (along with its target box or box cases) is
built by procedure BUILDARROW, whose pseudocode
is detailed in Algorithm 3.

The following remarks are intended to help the
reader follow the steps involved:

– Strictly speaking, the BUILDARROW procedure is
non-deterministic, as there may be more than one
way to parse the input concept description C in
the form outlined in lines 1– 6.

– More precisely, there may be more than one con-
junct D common to all disjuncts in the ∀R uni-
versal restriction.

– Concept descriptions C1 . . . Cn will correspond
to solid clusters in the target box.

– Concept descriptions Cn+1 . . . Cn+p will corre-
spond to dashed clusters (i.e., optional individu-
als) in the target box.

– Concept description D will correspond to the tar-
get box’s label and to arrows leaving the target
box.

– Concept descriptions F1 . . . Fq will correspond
either to solid clusters in the “among which” in-
ner box or to solid clusters in the target box, de-
pending on circumstances explained below.

– The procedure is structured in 3 cases:
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BUILDARROW(C)

1 � C is of the form
2 � ∀R.[(C1 uD) t · · · t (Cn uD) t (Cn+1 uD) t · · · t (Cn+p uD)]
3 � u ∃R.C1 u · · · u ∃R.Cn

4 � u ∃R.F1 u · · · u ∃R.Fq

5 � uK(R)
6 � with K(R) a (possibly empty) list of natural number intervals representing cardinality restrictions over R
7 if n = 0 ∧ p = 0
8 then if q > 0
9 then opt ← ( cluster dashed ( ) ( ) )

10 existentials ← ( F1 . . . Fq ); stroke ← solid
11 else if K(R) has an interval containing 0
12 then opt ← ( cluster dashed ( ) ( ) )
13 existentials ← ( ); stroke ← dashed
14 else opt ← ( ); existentials ← ( > ); stroke ← solid
15 boxCase ← BUILDBOXCASE(>, existentials, opt)
16 return ( arrow stroke ( R ) ( K(R) ) ( cases boxCase ) )
17 if n > 0
18 then existentials ← ( C1 . . . Cn )
19 if q = 0
20 then opt ← ( )
21 else opt ← ( innerBox BUILDCLUSTERCASE(solid, F1) . . . BUILDCLUSTERCASE(solid, Fq) )
22 if p > 0
23 then opt ← opt + ( cases BUILDCLUSTERCASE(dashed, Cn+1) . . . BUILDCLUSTERCASE(dashed, Cn+p) )
24 boxCase ← BUILDBOXCASE(D, existentials, opt)
25 return ( arrow solid ( R ) ( K(R) ) ( cases boxCase ) )
26 if n = 0 ∧ p > 0
27 then existentials ← ( ); opt ← ( ); literals ← ( ); disjuncts ← ( Cn+1 . . . Cn+p )
28 for each Ci in Cn+1 . . . Cn+p

29 do if Ci is a literal
30 then literals ← literals t Ci; disjuncts ← disjuncts − Ci

31 boxCases ← ( cases )
32 if q = 0
33 then if literals is nonempty
34 then opt ← BUILDCLUSTERCASE(dashed, literals)
35 boxCases ← boxCases +BUILDBOXCASE(D, existentials, opt)
36 for each C in disjuncts
37 do opt ← BUILDCLUSTERCASE(dashed, C)
38 boxCases ← boxCases +BUILDBOXCASE(D, existentials, opt)
39 if K(R) is absent or has an interval containing 0
40 then return ( arrow dashed ( R ) ( K(R) ) ( boxCases ) )
41 else return ( arrow solid ( R ) ( K(R) ) ( boxCases ) )
42 else existentials ← F1 . . . Fq

43 if literals is nonempty
44 then opt ← BUILDCLUSTERCASE(dashed, literals)
45 boxCases ← boxCases + BUILDBOXCASE(D, existentials, opt)
46 for each C in disjuncts
47 do opt ← BUILDCLUSTERCASE(dashed, C)
48 boxCases ← boxCases + BUILDBOXCASE(D, existentials, opt)
49 return ( arrow solid ( R ) ( K(R) ) ( boxCases ) )

Algorithm 3. Conversion from ALCN to model outlines: BUILDARROW
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BUILDBOXCASE(D,E, opt)

1 �D is of the form L1 u · · · u Ln u C1 u · · · u Cm, with each Ci over a role name
2 boxLabel ← ( AND L1 · · ·Ln )
3 boxArrows ← ( )
4 for each Ci in C1 · · ·Cm

5 do boxArrows ← boxArrows + BUILDARROW(Ci)
6 allClusterCases ← ( )
7 for each element G in E
8 do clusterCases ← ( cases ) + BUILDCLUSTERCASES(solid, G)
9 allClusterCases ← allClusterCases + clusterCases

10 return ( box ( boxLabel ) allClusterCases opt boxArrows )

Algorithm 4. Conversion from ALCN to model outlines: BUILDBOXCASE

1. n = 0 ∧ p = 0 (starting on line 7): there is
only one target box case. If present, concept
descriptions F1 . . . Fq give rise to solid clus-
ters. As there are no universal restrictions,
the target box will contain a dashed, unla-
beled cluster, unless the cardinality restric-
tions K force the existence of individuals in
the target box, in which case, the unlabeled
cluster will be solid.

2. n > 0 (starting on line 17): there is only
one target box case. Concept descriptions
C1 . . . Cn will give rise to solid clusters.
If present, descriptions Cn+1 . . . Cn+p will
give rise to dashed, labeled clusters corre-
sponding to optional individuals. If present,
concept descriptions F1 . . . Fq will give rise
to solid clusters in the “among which” inner
box. D will give rise to the target box’s label
and outgoing arrows.

3. n = 0 ∧ p > 0 (starting on line 26): mul-
tiple box cases may be produced here. Each
of Cn+1 . . . Cn+p that is not a literal will
give rise to a box case (literals will be gath-
ered into one single box case and appear as a
disjunction in the dashed cluster’s label). If
present, concept descriptions F1 . . . Fq will
give rise to solid clusters in the “among
which” inner box, which will be common to
all box cases. D will participate in the target
box’s label and outgoing arrows.

Finally, procedure BUILDBOXCASE in Algorithm 4
is responsible for building each box case. Concept de-
scription D gives rise to the box’s label and outgo-
ing arrows. The contents of the box case are generated
from parameters E (solid clusters) and opt (dashed
clusters and/or an “among which” inner box). Note

that the stroke of the box (dashed or solid) and the car-
dinality restrictions are actually associated to the arrow
incident to the box, which is computed by the BUIL-
DARROW procedure.

5. Usability Evaluation

We have conducted a usability study in order to eval-
uate our proposed diagrammatic notation. The main
aim was to test the usefulness of model outlines for the
understanding of complex concept descriptions.

Note that it is the model outline notation itself that is
being evaluated, not a specific graphical user interface
(GUI) implementing the notation. Thus, the focus of
the study is on understanding, not on interaction. We
find this to be an advantage, as changes can be made
to the notation before we are committed to a specific
GUI, and problems can be identified in relation to spe-
cific features of the notation, so that special attention
can be given to these problems in order to solve or mit-
igate them through the use of appropriate human inter-
action techniques. From a practical point of view, this
potentially reduces the need for radical, costly changes
after implementation.

Likewise, we have chosen model outlines for the
simpler ALCN language so we could find out early if
something needs to be changed in our most basic as-
sumptions. The result of this test will help us design
the extensions of model outlines to deal with more ex-
pressive concept languages.

Following [9], our main goal is to show that model
outlines can help users with little or no training in
Logic to understand complex concept descriptions.
In particular, model outlines are more effective than
Manchester OWL for this task.
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Manchester OWL (see Figure 3 and also [12]) is
a textual notation for DL which uses keywords for
logical symbols (e.g., “SOME” for “∃”), infix nota-
tion for restrictions (e.g., “hasChild SOME Man” for
“∃hasChild.Man”), syntax highlighting and indenta-
tion in order to make descriptions more readable for
nonspecialists. So, we are comparing our diagram-
matic notation with a textual notation designed for the
same target audience. As the test participants were all
Brazilians, we used Brazilian Portuguese translations
of the Manchester OWL keywords, as listed below:

NOT NÃO
AND E
OR OU
SOME ALGUM
ONLY SOMENTE
ONLYSOME SOMENTEALGUM
MIN MIN
MAX MAX
EXACTLY EXATAMENTE

The decision to use Brazilian Portuguese transla-
tions of Manchester OWL keywords may have intro-
duced an extra variable in the usability study, as one
must now worry about how faithful to the original key-
words those translations are. However, educated Por-
tuguese speakers will notice that the translations reflect
the semantics of the original keywords, including the
potential for undesired interpretations (i.e., those that
do not agree with the formal semantics of DL opera-
tors).

For example, Brazilian Portuguese “OU” is as am-
biguous as English “OR”, as many speakers tend to
interpret it as exclusive or instead of inclusive or.

Also, the mistake of interpreting universal restric-
tions as implying existence is as common with English
“ONLY” as with Portuguese “SOMENTE”.

As noted in [12], users “still needed training to
re-align their ‘natural interpretation’ with the cor-
rect OWL/DL interpretation. [. . . ] However, it is ar-
guable that explanations of OWL semantics would be
required whatever syntax was chosen.” In our usability
study, participants took a tutorial on Manchester OWL
(in Portuguese) containing many examples before they
had to answer questions to test their understanding of
concept descriptions.

The material used in the tutorials and the tests is
available online at http://www.professores.
uff.br/fnaufel/mo/us01.html.

Next, we defined a set of concerns, in the form
of questions like: Can users understand the mean-
ing of X?, where X is one of the elements present in
model outlines (solid clusters, dashed clusters, arrows,
boxes, inner boxes, case widgets, etc.). Specific con-
cerns were also formulated (e.g., “Can users under-
stand that individuals in “among which” inner boxes
are mandatory?”).

We selected 10 participants for our study (note that
[9] recommends 6 to 12). These participants come
from several backgrounds and occupations, as detailed
below. All received detailed information on the pro-
cedures and on their rights as participants. All signed
terms of informed consent.

One session of the study consisted of:

1. a pre-test questionnaire,
2. a tutorial on notation A,
3. a specification on domain X using notation A,
4. 15 questions about the specification,
5. a post-task questionnaire,
6. a tutorial on notation B,
7. a specification on domain Y using notation B,
8. 15 questions about the specification,
9. a post-task questionnaire,

10. a post-test questionnaire.

Notations A and B alternated between model out-
lines and Manchester OWL. Domains X and Y alter-
nated between graduate courses (which included Fig-
ure 4 of this paper) and family relations. Each par-
ticipant answered 15 questions for each domain. The
questions for each domain were fixed, regardless of
the notation used. For each domain, half the partici-
pants answered questions on model outlines, and half
answered questions on Manchester OWL specifica-
tions. Half the participants saw model outlines before
Manchester OWL, and half saw Manchester OWL be-
fore model outlines.

The number of correct answers and the time to an-
swer were measured. Additional information was ob-
tained in the form of comments collected through the
“thinking out loud” protocol [9] and through question-
naires. Table 1 shows the occupation and the number
of correct answers for each participant.

For the graduate courses domain, we note the fol-
lowing highlights:

Question 8 was related to Figure 4 of this paper, and
elicited 5 errors using Manchester OWL, and no errors
using model outlines. The question was: “If a course
is attended only by students that are not graduate stu-
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Table 1
Occupation and number of correct answers for each participant

Occupation

Correct
answers
(model

outlines)

Correct
answers

(Manchester
OWL)

Logician 15 14

Theoretical physicist 15 12

Software engineer 15 12

Secretary 15 10

Nurse 13 12

Graphics designer 13 12

Social worker 13 11

Comp. Science undergrad 13 10

Production engineer 13 9

Mathematician 12 14

Totals: 137 116

Percentages: 91.3% 77.3%

dents, does the course meet the specification?” The er-
ror was probably induced by the abbreviation recom-
mended in [12]:

hasAttendance SOME [Student,GradStudent]

which seems to have evoked the idea that the brack-
eted list consisted of a set of alternatives. This ques-
tion was answered correctly by all participants using
model outlines, which indicates that users understood
the meaning of “among which” inner boxes.

Question 14 elicited 4 errors with Manchester OWL,
and 3 errors with model outlines. This question was
about a specification consisting of 4 cases. The sit-
uation proposed in the question satisfied exactly one
of the 4 cases. With Manchester OWL, the partici-
pants had difficulty in finding their way among multi-
ple parentheses and complex disjunctions. With model
outlines, they apparently thought that the proposed sit-
uation had to satisfy all cases.

For the family relations domain, we note the follow-
ing highlights:

Question 6 elicited 4 errors with Manchester OWL,
and no errors with model outlines. This question asked
if a person satisfying the given specification could
have jobless children. The specification in Manchester
OWL included the sentence

hasChild SOME

(Man AND worksAt ONLY Hospital)

Apparently, the users forgot the fact that “ONLY”
(which stands for “∀”) does not imply the existence of
objects. In the model outline, the presence of a dashed
cluster, a dashed box and a dashed arrow made it clear
that existence was not required.

Question 8 elicited 3 errors using Manchester OWL,
and 1 error using model outlines. This question asked
if a person satisfying the given specification had to
have a grandchild working as a surgeon. Some users
found it confusing to follow the composition of roles
(hasChild–hasChild), and were again, as in question 8
about graduate courses, confused by the Manchester
OWL abbreviation “SOME [· · · ]”. In the model out-
line, the presence of a solid cluster labeled Surgeon in-
side an “among which” inner box made the correct an-
swer more clear.

One trend was clearly observed in both domains:
specifications that involve cases (i.e., complex disjunc-
tions), such as the one in Figure 5 of this paper, are
more difficult to understand than those that do not, as
Table 2 indicates.

Table 2
Number of correct answers per domain and type of specification

Domain and
type of

specification

Correct answers
(model outlines)

Correct answers
(Manchester

OWL)
Family, no cases 94% 72%
Courses, no cases 96% 84%

Family, with cases 84% 72%
Courses, with cases 84% 80%

Among the comments offered by the participants,
many indicated confusion due to the way cases were
presented in model outlines (like in Figure 5 of this pa-
per, the layout used in the test consisted of 4 diagrams
on a single page). Some users thought that all 4 dia-
grams had to be satisfied. This is clearly one weakness
of model outlines (on paper) that we must try to elim-
inate in the GUI implementation. We predict that such
confusion will not arise if the user interacts with the
model outline (e.g., dynamically expanding and col-
lapsing cases). The GUI should also make clear when
clusters in different cases actually correspond to the
same cluster, by showing one single cluster which can
be expanded in different ways.

As for time: in the courses domain, each user took in
average 28 seconds per question, regardless of the no-
tation. In the family relations domain, each user took in
average 26 seconds per question with model outlines,
but 40 seconds per question with Manchester OWL.
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Of the 10 participants, 5 said they preferred model
outlines, 4 said they liked both notations equally well,
and 1 said both notations were equally bad, remarking
that he preferred formal logic notation.

6. Discussion

Among several questions related to our proposed vi-
sual framework, we examine here the issue of possible
applications and a more specific problem regarding the
interaction of concept descriptions with the axioms in
the TBox of a formal ontology.

6.1. Applications

Apart from the usability issues discussed in Sec-
tion 5, we can examine the question of usefulness;
more precisely, in what applications and tasks can
model outlines be of help to users?

The algorithms presented in Sections 3 and 4 pro-
vide a translation-based formal semantics to our visual
language. Such algorithms also suggest two basic ways
of using model outlines:

In a first scenario, an ontology browser can show
nonspecialist users model outlines corresponding to
complex concept descriptions (such as necessary and
sufficient conditions in the definitions of classes). This
was our original motivation, and this is the applica-
tion the usability test was designed to take into account
(investigating how well nonspecialist users could un-
derstand concept descriptions rendered as model out-
lines). Here, a concept description is translated into a
model outline, and the user takes on a more or less pas-
sive stance, interacting with a finished diagram only
to collapse and expand elements, switch the focus to
certain cases, etc.

Of course, the usefulness of model outlines in this
scenario depends on the frequency with which users
have to deal with complex concept descriptions such as
the one represented by the model outline in Figure 4.
We conjecture that in the context of proof explanation,
at least, complex concept descriptions arise naturally.
The answer to the more general question — how often
do complex concept descriptions occur in practice? —
requires designing specific tests and surveys targeted
at a broad population of ontology users, and is not ex-
amined further in this article.

In a second situation, the user may be expected to
create and edit model outlines. We can envision a ded-
icated graphical editor which will guide the user in the

task of assembling a diagram from basic elements such
as clusters, boxes and arrows, providing autocomple-
tion and other facilities to help the user find the desired
class and role names to include in labels. In this sce-
nario, the user takes on a much more active role, and
the interaction provided by the graphical editor must
be carefully planned in order to prevent the user from
building nonsensical diagrams or, even worse, to pre-
vent the user from becoming confused because a cer-
tain operation he is trying to perform (and which he
finds to be intuitive) is not being allowed by the edi-
tor. In other words, the manual construction of model
outlines by the user presents interaction and usability
problems that seem to be harder than those involved in
the mere exhibition of finished model outlines. If such
a graphical editor is to be made available, more spe-
cific usability tests must be conducted first.

The manual construction of model outlines is an ac-
tivity that may be required in at least two tasks: the user
may want to define concept descriptions to serve as
necessary and sufficient conditions in class definitions,
or the user may want to construct a diagram to submit
as a visual query on the ontology he is working on. In
this latter case, the definition of model outlines must
be altered to provide features that are typical of query
languages, such as clusters marked as variables to be
bound by the query results. One possibility that seems
worth investigating is the formatting of the query’s re-
sults themselves as model outlines, allowing the same
visual language to be used for queries and for the data
returned by them.

The use of model outlines to exhibit instance data
leads to a third possible application: model explo-
ration [3], where a user may interact with generated
models of the formal ontology he is working on, so as
to gain better understanding of the axioms in the ontol-
ogy and their logical consequences and/or to test con-
jectures.

6.2. Model outlines and the TBox

Model outlines have been originally designed to de-
note “standalone” concept descriptions, which means
that the atomic concepts and the role names that ap-
pear in the diagram are not constrained in any way
other than what is shown in the diagram itself. How-
ever, in real life, concept descriptions usually appear
in the context of a formal ontology, whose TBox ax-
ioms affect the interpretation of atomic concepts and
role names.
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A simple example is the fact that a solid cluster la-
beled “Class1 ANDClass2 ” will denote nonexistent
individuals if the ontology’s TBox contains the axiom

Class1 v ¬Class2

which states that the atomic concepts Class1 and
Class2 are disjoint.

A slightly more complex situation is illustrated by
Figure 4, which seems to suggest that GradStudent
is a subclass of Student , but this type of knowledge
belongs in the TBox, and should not be conveyed by
a model outline! To be exact, the “among which” in-
ner box in Figure 4 is only saying that if GradStudent
and Student are disjoint, then the GraduateCourses
at the root of the diagram can have no attendance.

This is a general phenomenon related to “among
which” inner boxes. A question that naturally arises,
then, is whether these inner boxes are really necessary
in the visual language.

Consider the model outline in Figure 8. It corre-
sponds to the ALCN description

∀R.(A tB) u ∃R.A u ∃R.B u ∃R.C

The modified model outline obtained by removing
the inner box and placing the cluster labeled C in the
main box, along with the clusters labeled A and B,
shown in Figure 9, corresponds to theALCN descrip-
tion

∀R.(A tB t C) u ∃R.A u ∃R.B u ∃R.C

It can be shown that these two descriptions are
equivalent if and only if the interpretation of C is con-
tained in the interpretation of A t B, but this contain-
ment is not the kind of information we have designed
model outlines to convey.

In the context of a model-outline-based tool used for
ontology browsing, one solution would be to invoke a
DL reasoner to check the consistency of each cluster
label and each box, using the knowledge present in the
TBox. Then the tool could somehow visually highlight
the inconsistent elements of the diagram, alerting the
user.

In the context of a model-outline-based visual query
language, it seems that “among which” inner boxes
can be eliminated without essentially compromising
the range of queries that can be formulated. This is be-
cause the user could build a query corresponding to
Figure 9 and be informed, in the results, of the possi-

Fig. 8. A model outline with an inner box

Fig. 9. A similar model outline, without the inner box

bility that individuals could appear at the same time as
instances of A tB and of C.

7. Conclusions

The main achievements of the work related here
are the reformulation of our model outline visual lan-
guage and its related algorithms, as well as the results
of our first usability test, comparing model outlines to
Manchester OWL.

Ontology visualization is a very active field of study.
The survey [15] discusses over 40 ontology visualiza-
tion tools, all of them developed in the past 10 years.
All of those tools are general, in the sense that they
use one single visualization framework to show several
types of information about the ontology: the subsump-
tion hierarchy, roles, etc. In particular, those tools show
concept descriptions either textually (e.g., Protégé) or
in the form of abstract syntax trees (as in Figure 1 of
this paper).

Model outlines, on the other hand, are specialized,
having been designed specifically to show concept de-
scriptions. Although the notation used is new, our us-
ability test indicates it is intuitive enough to be un-



18 F.N. do Amaral / Model Outlines: a Visual Language for DL Concept Descriptions

derstood by nonspecialists. The specialized nature of
model outlines suggests that they can be integrated
with a more general tool, so that users can easily
switch views, e.g., from the subsumption hierarchy as
a tree to the definition of a class as a model outline.

To summarize, this article has provided a precise,
updated presentation of our visual framework, with
rigorous definitions of the syntax and the semantics of
model outlines. Furthermore, the results of a carefully
conducted usability test indicate that our framework is
more useful in helping nonspecialist users understand
complex concept descriptions than a text-based nota-
tion (Manchester OWL).

We are currently implementing a concept descrip-
tion browser based on model outlines, as a Protégé plu-
gin. We are taking special care to rely on graphical
conventions and interaction techniques that profit from
the vast body of knowledge related to visual perception
and cognitive principles, as described, e.g., in [18].

Work is also under way to extend model outlines to
the concept language of OWL 2 DL [13], based on the
following remarks:

– A nominal {a} is represented by a single diamond
(instead of a cluster) labeled “a”. This also ap-
plies to value restrictions such as R 3 a (or, in
Manchester OWL, R VALUE a);

– A negated nominal ¬{a} is represented by a clus-
ter labeled “NOT a”;

– A set {a1, . . . , an} is represented by a cluster la-
beled “CONTAINED IN {a1, . . . , an}”;

– A negated set ¬{a1, . . . , an} is represented by a
cluster labeled “NONE OF {a1, . . . , an}”;

– Equivalences are used to convert conjunctions
and disjunctions of (possibly negated) nominals
or value restrictions into expressions using sets of
nominals. For example:

{a} t {b}� {a, b}

¬{a} u ¬{b}� ¬{a, b}

¬(R 3 a) � ∀R.¬{a}

– Qualified number restrictions correspond to car-
dinality labels attached to clusters (while non-
qualified number restrictions remain attached to
boxes);

– Local reflexivity (e.g., ∃R.SELF) is represented
by an arrow from a cluster or a diamond to itself;

While these remarks are rather intuitive, there are
more difficult challenges in extending model outlines

to OWL 2 DL. Representing concrete domains is one.
Deciding how much information from the RBox we
can effectively represent in diagrammatic form is an-
other (e.g., inverse roles, role chains). These are issues
still to be resolved.
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Appendix

A. Proof of correctness

Formally, we can consider model outlines as just
another syntax for concept descriptions. As such, the
meaning of a model outline M is defined by its trans-
lation as computed by the call DESCR(M). Analo-
gously, an ALCN concept description C can be ex-
pressed in the form of a model outline by the result of
BUILDCLUSTERCASES(solid, C).

In this appendix, we prove that algorithms DESCR
and BUILDCLUSTERCASES work correctly together,
in the sense that converting an ALCN concept de-
scription to a model outline and then translating the
model outline back toALCN yields a concept expres-
sion which is equivalent to the original one. More pre-
cisely:

Theorem (commutation of algorithms). For every
ALCN concept description C in modified disjunctive
normal form, and for every s ∈ {solid, dashed}:

C ≡ DESCR(BUILDCLUSTERCASES(s, C))

Definition (modified disjunctive normal form). The
set of ALCN concept descriptions in modified dis-
junctive form (mDNF) is defined inductively. A concept
description C is in mDNF iff

Base: C = L1 t · · · t Ln, with each Li a literal; if
n = 0, then C = ⊥;

Induction: C = D1 t · · · t Dn, with at least one of
the Di not a literal, where each Di is of the form

A1 u · · · uAm

where each Aj is either a literal or a conjunction
of the form

∀Rj .[(C1 uD) t · · · t (Cn uD)

t (Cn+1 uD) t · · · t (Cn+p uD)]

u ∃Rj .C1 u · · · u ∃Rj .Cn

u ∃Rj .F1 u · · · u ∃Rj .Fq

uK(Rj)

where D, if present, is of the form

L′
1 u · · · u L′

n′ u C ′
1 u · · · u C ′

m′

and where

– All indices are greater than or equal to zero;
– Each Ci and each Fi is in mDNF;
– K(Rj) is a set of “natural number inter-

vals” representing cardinality restrictions
over role Rj (see Section 4 for more com-
ments);

– For any pair of conjuncts Ax and Ay , we
have that x 6= y implies Rx 6= Ry (i.e., all
information about one role is in one single
conjunct);

– Each L′
i is a literal;

– Each C ′
i has the same general form as the

Aj’s, and as with the Aj’s, x 6= y implies
Rx 6= Ry .

Notation. For typesetting reasons, we will use the fol-
lowing abbreviations and conventions in the proof:

– “BCC(. . .)” for “BUILDCLUSTERCASES(. . .)”
– “BDESCR(. . .)” for “BOXDESCR(. . .)”
– “BARROW(. . .)” for “BUILDARROW(. . .)”
– Whenever algorithms DESCR and BOXDESCR

execute a loop in order to assemble a disjunction
(resp. a conjunction), the variable that will hold
the result is initialized with ⊥ (resp. >). Here,
we will refrain from writing these initial values,
as the resulting disjunction (resp. conjunction) is
obviously equivalent to the one produced by the
algorithms.

Proof. The proof of the theorem is by strong induction
over the structure of concept description C (in mDNF).
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Base case.
In this case, C = L1 t · · · t Ln, where each Li is a

literal.
Then BCC(s, C) will return the model outline

(cases (cluster s (OR L1 · · ·Ln)()))

which, when given to DESCR, will produce

L1 t · · · t Ln

which is equivalent to (in fact, identical with) C.

Inductive step.
Now, let C = D1t· · ·tDn, with at least one of the

Di not a literal, as in the inductive case of the definition
of mDNF.

We assume, as the inductive hypothesis, that for all
descriptions Ci, Fi and C ′

i in the structure of C and for
any s ∈ {solid,dashed} the following equivalences
hold:

Ci ≡ DESCR(BCC(s, Ci))

Fi ≡ DESCR(BCC(s, Fi))

C ′
i ≡ DESCR(BCC(s, C ′

i))

We then show that for any s ∈ {solid,dashed}

C ≡ DESCR(BCC(s, C))

Without loss of generality, we rewrite C in such a
way that all literals are grouped at the beginning:

C = L1 t · · · t Lm tD1 t · · · tDn

Then BCC(s, C) is

(cases (cluster s (OR L1 ... Lm)())
(cluster s label(D1) (arrows(D1)))
...
(cluster s label(Dn) (arrows(Dn))))

where “label(Di)” is the label produced by BCC
for the cluster case associated to disjunct Di, and
“arrows(Di)” is the list of arrows produced by BCC
for the cluster case associated to disjunct Di.

Applying DESCR gives DESCR(BCC(s, C)), which
is of the form

(L1 t · · · t Lm)

t (label(D1) u
l

A∈
arrows(D1)

BDESCR(A))

t · · ·

t (label(Dn) u
l

A∈
arrows(Dn)

BDESCR(A))

(3)

In order to write this description in more detail (and
to prove that it is equivalent to C), let us recall that
each disjunct Di is of the form

A1 u · · · uAp

(please refer to the inductive definition of mDNF for
details). Without loss of generality, let us group all
conjuncts that are literals, writing

Di = L1 u · · · u Lq uA1 u · · · uAp

Then labels(Di) will be

(AND L1 ... Lq)

and arrows(Di) will be

(BARROW(A1) ... BARROW(Ap))

which lets us rewrite the line associated to disjunct Di

in (3) as

L1 u · · · u Lq

u BDESCR(BARROW(A1))

u · · ·

u BDESCR(BARROW(Ap))

(4)

Next, we will consider, for each conjunct Aj , first
the arrow produced by BARROW(Aj), and then the
description produced by BDESCR(BARROW(Aj)) for
this arrow. Our intention is to show that

BDESCR(BARROW(Aj)) ≡ Aj

as this equivalence, when applied to (4) and then to (3),
will finally allow us to conclude that

C ≡ DESCR(BCC(s, C))



F.N. do Amaral / Model Outlines: a Visual Language for DL Concept Descriptions 21

First, however, we prove the following simple and
useful lemma:

Lemma. The BARROW procedure produces an arrow
in such a way that it makes no difference in semantics
whether the arrow will have a cluster or a box as its
source. More precisely, for any concept description C
of the form

∀Rj .[(C1 uD) t · · · t (Cn uD)

t (Cn+1 uD) t · · · t (Cn+p uD)]

u ∃Rj .C1 u · · · u ∃Rj .Cn

u ∃Rj .F1 u · · · u ∃Rj .Fq

uK(Rj)

and any s ∈ {solid, dashed}, we have that

DESCR(BCC(s, C)) ≡ BDESCR(BARROW(C))

Proof of lemma.
For any C of the form given, BCC(s, C) is

(cases (cluster s ()(BARROW(C))))

Applying DESCR to this model outline yields

> u BDESCR(BARROW(C))

which is equivalent to BDESCR(BARROW(C)).
(End of proof of lemma.)

In what follows, we split the proof that

BDESCR(BARROW(Aj)) ≡ Aj

into 8 cases, which mirror the structure of the code
of the BARROW procedure. Recall that Aj is of the
form (again, please refer to the inductive definition of
mDNF for details)

∀Rj .[(C1 uD) t · · · t (Cn uD)

t (Cn+1 uD) t · · · t (Cn+p uD)]

u ∃Rj .C1 u · · · u ∃Rj .Cn

u ∃Rj .F1 u · · · u ∃Rj .Fq

uK(Rj)

The cases consider different conditions for the val-
ues of n, p and q in the form of Aj .

Case 1: n = 0, p = 0, q = 0
In this case, Aj = K(Rj).
Note that K(Rj) must be nonempty, or Aj would

be > (a literal), which we know is not true (as all con-
juncts that are literals have been grouped before A1).

If K(Rj) includes an interval containing 0, then
BARROW(Aj) will be

(arrow dashed (Rj)(K(Rj))
(cases

(box ()()(cluster dashed ()())())))

and BDESCR(BARROW(Aj)) will be

K(Rj) u ∀Rj .>

which is equivalent to Aj .
If K(Rj) does not include an interval containing 0,

then BARROW(Aj) will be

(arrow solid (Rj)(K(Rj))
(cases

(box ()(BCC(solid,>))()())))

and BDESCR(BARROW(Aj)) will be

K(Rj)

u ∃Rj .DESCR(BCC(solid,>))

u ∀Rj .DESCR(BCC(solid,>))

which is equivalent to

K(Rj) u ∃Rj .> u ∀Rj .>

and hence to Aj .

Case 2: n = 0, p = 0, q > 0
In this case,

Aj = ∃Rj .F1 u · · · u ∃Rj .Fq uK(Rj)

Then BARROW(Aj) will be

(arrow solid (Rj)(K(Rj))
(cases

(box
()
(BCC(solid, F1) · · ·BCC(solid, Fq))
(cluster dashed ()())())))
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and BDESCR(BARROW(Aj)) will be

K(Rj) u ∀Rj .>

u ∃Rj .DESCR(BCC(solid, F1))

u · · ·

u ∃Rj .DESCR(BCC(solid, Fq))

which, by the inductive hypothesis, is equivalent to

K(Rj) u ∀Rj .>

u ∃Rj .F1

u · · ·

u ∃Rj .Fq

and hence to Aj .

Case 3: n > 0, p = 0, q = 0

In this case,

Aj = ∀Rj .[(C1 uD) t · · · t (Cn uD)]

u ∃Rj .C1 u · · · u ∃Rj .Cn uK(Rj)

Then BARROW(Aj) will be

(arrow solid (Rj)(K(Rj))
(cases

(box
(label(D))
(BCC(solid, C1) · · ·BCC(solid, Cn))
()(arrows(D)))))

Recalling that D = L′
1 u · · · u L′

n′ u C ′
1 u · · · u C ′

m′ ,
we define label(D) to be

(AND L′
1 · · ·L′

n′)

and arrows(D) to be

(BARROW(C′
1) · · ·BARROW(C′

m′))

So BDESCR(BARROW(Aj)) will be

K(Rj) u ∀Rj .(L
′
1 u · · · u L′

n′)

u ∀Rj .(DESCR(BCC(solid, C1))

t · · · t DESCR(BCC(solid, Cn)))

u ∃Rj .DESCR(BCC(solid, C1))

u · · ·

u ∃Rj .DESCR(BCC(solid, Cn))

u ∀Rj .BDESCR(BARROW(C ′
1))

u · · ·

u ∀Rj .BDESCR(BARROW(C ′
m′))

which, by the lemma, is equivalent to

K(Rj) u ∀Rj .(L
′
1 u · · · u L′

n′)

u ∀Rj .(DESCR(BCC(solid, C1))

t · · · t DESCR(BCC(solid, Cn)))

u ∃Rj .DESCR(BCC(solid, C1))

u · · ·

u ∃Rj .DESCR(BCC(solid, Cn))

u ∀Rj .DESCR(BCC(s, C ′
1))

u · · ·

u ∀Rj .DESCR(BCC(s, C ′
m′))

(for any s ∈ {solid,dashed}). This, by the inductive
hypothesis, is equivalent to

K(Rj) u ∀Rj .(L
′
1 u · · · u L′

n′)

u ∀Rj .(C1 t · · · t Cn)

u ∃Rj .C1 u · · · u ∃Rj .Cn

u ∀Rj .C
′
1 u · · · u ∀Rj .C

′
m′

which can be rewritten as

K(Rj)

u ∀Rj .[(C1 t · · · t Cn)

u (L′
1 u · · · u L′

n′ u C ′
1 u · · · u C ′

m′)]

u ∃Rj .C1 u · · · u ∃Rj .Cn

which is equivalent to Aj .
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Case 4: n > 0, p = 0, q > 0

In this case,

Aj = ∀Rj .[(C1 uD) t · · · t (Cn uD)]

u ∃Rj .C1 u · · · u ∃Rj .Cn

u ∃Rj .F1 u · · · u ∃Rj .Fq uK(Rj)

Then BARROW(Aj) will be

(arrow solid (Rj)(K(Rj))
(cases

(box
(label(D))
(BCC(solid, C1) · · ·BCC(solid, Cn))
((InnerBox

BCC(solid, F1) · · ·BCC(solid, Fq)))
(arrows(D)))))

As in case 3, we define label(D) to be

(AND L′
1 · · ·L′

n′)

and arrows(D) to be

(BARROW(C′
1) · · ·BARROW(C′

m′))

So BDESCR(BARROW(Aj)) will be

K(Rj) u ∀Rj .(L
′
1 u · · · u L′

n′)

u ∀Rj .(DESCR(BCC(solid, C1))

t · · · t DESCR(BCC(solid, Cn)))

u ∃Rj .DESCR(BCC(solid, C1))

u · · ·

u ∃Rj .DESCR(BCC(solid, Cn))

u ∃Rj .DESCR(BCC(solid, F1))

u · · ·

u ∃Rj .DESCR(BCC(solid, Fq))

u ∀Rj .BDESCR(BARROW(C ′
1))

u · · ·

u ∀Rj .BDESCR(BARROW(C ′
m′))

which, by the lemma, is equivalent to

K(Rj) u ∀Rj .(L
′
1 u · · · u L′

n′)

u ∀Rj .(DESCR(BCC(solid, C1))

t · · · t DESCR(BCC(solid, Cn)))

u ∃Rj .DESCR(BCC(solid, C1))

u · · ·

u ∃Rj .DESCR(BCC(solid, Cn))

u ∃Rj .DESCR(BCC(solid, F1))

u · · ·

u ∃Rj .DESCR(BCC(solid, Fq))

u ∀Rj .DESCR(BCC(s, C ′
1))

u · · ·

u ∀Rj .DESCR(BCC(s, C ′
m′))

(for any s ∈ {solid,dashed}). This, by the inductive
hypothesis, is equivalent to

K(Rj) u ∀Rj .(L
′
1 u · · · u L′

n′)

u ∀Rj .(C1 t · · · t Cn)

u ∃Rj .C1 u · · · u ∃Rj .Cn

u ∃Rj .F1 u · · · u ∃Rj .Fq

u ∀Rj .C
′
1 u · · · u ∀Rj .C

′
m′

which can be rewritten as

K(Rj)

u ∀Rj .[(C1 t · · · t Cn)

u (L′
1 u · · · u L′

n′ u C ′
1 u · · · u C ′

m′)]

u ∃Rj .C1 u · · · u ∃Rj .Cn

u ∃Rj .F1 u · · · u ∃Rj .Fq

which is equivalent to Aj .

Case 5: n > 0, p > 0, q = 0
In this case,

Aj = ∀Rj .[(C1 uD) t · · · t (Cn uD)

(Cn+1 uD) t · · · t (Cn+p uD)]

u ∃Rj .C1 u · · · u ∃Rj .Cn uK(Rj)

Then BARROW(Aj) will be
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(arrow solid (Rj)(K(Rj))
(cases

(box
(label(D))
(BCC(solid, C1) · · ·BCC(solid, Cn))
((BCC(dashed, Cn+1)
· · ·BCC(dashed, Cn+p)))

(arrows(D)))))

As in case 3, we define label(D) to be

(AND L′
1 · · ·L′

n′)

and arrows(D) to be

(BARROW(C′
1) · · ·BARROW(C′

m′))

So BDESCR(BARROW(Aj)) will be

K(Rj) u ∀Rj .(L
′
1 u · · · u L′

n′)

u ∀Rj .(DESCR(BCC(solid, C1))

t · · · t DESCR(BCC(solid, Cn))

t DESCR(BCC(dashed, Cn+1))

t · · · t DESCR(BCC(dashed, Cn+p)))

u ∃Rj .DESCR(BCC(solid, C1))

u · · ·

u ∃Rj .DESCR(BCC(solid, Cn))

u ∀Rj .BDESCR(BARROW(C ′
1))

u · · ·

u ∀Rj .BDESCR(BARROW(C ′
m′))

which, by the lemma, is equivalent to

K(Rj) u ∀Rj .(L
′
1 u · · · u L′

n′)

u ∀Rj .(DESCR(BCC(solid, C1))

t · · · t DESCR(BCC(solid, Cn))

t DESCR(BCC(dashed, Cn+1))

t · · · t DESCR(BCC(dashed, Cn+p)))

u ∃Rj .DESCR(BCC(solid, C1))

u · · ·

u ∃Rj .DESCR(BCC(solid, Cn))

u ∀Rj .DESCR(BCC(s, C ′
1))

u · · ·

u ∀Rj .DESCR(BCC(s, C ′
m′))

(for any s ∈ {solid,dashed}). This, by the inductive
hypothesis, is equivalent to

K(Rj) u ∀Rj .(L
′
1 u · · · u L′

n′)

u ∀Rj .(C1 t · · · t Cn t Cn+1 t · · · t Cn+p)

u ∃Rj .C1 u · · · u ∃Rj .Cn

u ∀Rj .C
′
1 u · · · u ∀Rj .C

′
m′

which can be rewritten as

K(Rj)

u ∀Rj .[(C1 t · · · t Cn t Cn+1 t · · · t Cn+p)

u (L′
1 u · · · u L′

n′ u C ′
1 u · · · u C ′

m′)]

u ∃Rj .C1 u · · · u ∃Rj .Cn

which is equivalent to Aj .

Case 6: n > 0, p > 0, q > 0
In this case,

Aj = ∀Rj .[(C1 uD) t · · · t (Cn uD)

(Cn+1 uD) t · · · t (Cn+p uD)]

u ∃Rj .C1 u · · · u ∃Rj .Cn

u ∃Rj .F1 u · · · u ∃Rj .Fq uK(Rj)

Then BARROW(Aj) will be

(arrow solid (Rj)(K(Rj))
(cases

(box
(label(D))
(BCC(solid, C1) · · ·BCC(solid, Cn))
((InnerBox

BCC(solid, F1) · · ·BCC(solid, Fq))
(BCC(dashed, Cn+1)
· · ·BCC(dashed, Cn+p)))

(arrows(D)))))

As in case 3, we define label(D) to be

(AND L′
1 · · ·L′

n′)



F.N. do Amaral / Model Outlines: a Visual Language for DL Concept Descriptions 25

and arrows(D) to be

(BARROW(C′
1) · · ·BARROW(C′

m′))

So BDESCR(BARROW(Aj)) will be

K(Rj) u ∀Rj .(L
′
1 u · · · u L′

n′)

u ∀Rj .(DESCR(BCC(solid, C1))

t · · · t DESCR(BCC(solid, Cn))

t DESCR(BCC(dashed, Cn+1))

t · · · t DESCR(BCC(dashed, Cn+p)))

u ∃Rj .DESCR(BCC(solid, C1))

u · · ·

u ∃Rj .DESCR(BCC(solid, Cn))

u ∃Rj .DESCR(BCC(solid, F1))

u · · ·

u ∃Rj .DESCR(BCC(solid, Fq))

u ∀Rj .BDESCR(BARROW(C ′
1))

u · · ·

u ∀Rj .BDESCR(BARROW(C ′
m′))

which, by the lemma, is equivalent to

K(Rj) u ∀Rj .(L
′
1 u · · · u L′

n′)

u ∀Rj .(DESCR(BCC(solid, C1))

t · · · t DESCR(BCC(solid, Cn))

t DESCR(BCC(dashed, Cn+1))

t · · · t DESCR(BCC(dashed, Cn+p)))

u ∃Rj .DESCR(BCC(solid, C1))

u · · ·

u ∃Rj .DESCR(BCC(solid, Cn))

u ∃Rj .DESCR(BCC(solid, F1))

u · · ·

u ∃Rj .DESCR(BCC(solid, Fq))

u ∀Rj .DESCR(BCC(s, C ′
1))

u · · ·

u ∀Rj .DESCR(BCC(s, C ′
m′))

(for any s ∈ {solid,dashed}). This, by the inductive
hypothesis, is equivalent to

K(Rj) u ∀Rj .(L
′
1 u · · · u L′

n′)

u ∀Rj .(C1 t · · · t Cn t Cn+1 t · · · t Cn+p)

u ∃Rj .C1 u · · · u ∃Rj .Cn

u ∃Rj .F1 u · · · u ∃Rj .Fq

u ∀Rj .C
′
1 u · · · u ∀Rj .C

′
m′

which can be rewritten as

K(Rj)

u ∀Rj .[(C1 t · · · t Cn t Cn+1 t · · · t Cn+p)

u (L′
1 u · · · u L′

n′ u C ′
1 u · · · u C ′

m′)]

u ∃Rj .C1 u · · · u ∃Rj .Cn

u ∃Rj .F1 u · · · u ∃Rj .Fq

which is equivalent to Aj .

Case 7: n = 0, p > 0, q = 0
In this case,

Aj = ∀Rj .[(C1 uD) t · · · t (Cp uD)]

uK(Rj)

Then BARROW(Aj) will be

(arrow s (Rj)(K(Rj))
(cases

(box
(label(D))
()
((BCC(dashed, L′′

1 t · · · t L′′
m′′)))

(arrows(D)))
(box

(label(D))
()
((BCC(dashed, Cm′′+1)))
(arrows(D)))
...

(box
(label(D))
()
((BCC(dashed, Cp)))
(arrows(D)))))

where s = dashed if K(Rj) includes an interval con-
taining 0, or s = solid if K(Rj) does not include an
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interval containing 0, and where, without loss of gen-
erality, we have rewritten the descriptions

C1, . . . , Cp

so as to group all literals first, followed by all nonliter-
als:

L′′
1 , . . . , L

′′
m′′ , Cm′′+1, . . . , Cp

As in case 3, we define label(D) to be

(AND L′
1 · · ·L′

n′)

and arrows(D) to be

(BARROW(C′
1) · · ·BARROW(C′

m′))

Note that this is the first time in the proof that more
than one box case may be generated. When we apply
BDESCR, each case will correspond to one disjunct in
BDESCR(BARROW(Aj)):

[K(Rj)

u ∀Rj .DESCR(

BCC(dashed, L′′
1 t · · · t L′′

m′′))

u ∀Rj .(L
′
1 u · · · u L′

n′)

u ∀Rj .BDESCR(BARROW(C ′
1))

u · · ·

u ∀Rj .BDESCR(BARROW(C ′
n′))]

t [K(Rj)

u ∀Rj .DESCR(BCC(dashed, Cm′′+1))

u ∀Rj .(L
′
1 u · · · u L′

n′)

u ∀Rj .BDESCR(BARROW(C ′
1))

u · · ·

u ∀Rj .BDESCR(BARROW(C ′
n′))]

t · · · t

[K(Rj)

u ∀Rj .DESCR(BCC(dashed, Cp))

u ∀Rj .(L
′
1 u · · · u L′

n′)

u ∀Rj .BDESCR(BARROW(C ′
1))

u · · ·

u ∀Rj .BDESCR(BARROW(C ′
n′))]

By the lemma, this is equivalent to

[K(Rj)

u ∀Rj .DESCR(

BCC(dashed, L′′
1 t · · · t L′′

m′′))

u ∀Rj .(L
′
1 u · · · u L′

n′)

u ∀Rj .DESCR(BCC(s, C ′
1))

u · · ·

u ∀Rj .DESCR(BCC(s, C ′
n′))]

t [K(Rj)

u ∀Rj .DESCR(BCC(dashed, Cm′′+1))

u ∀Rj .(L
′
1 u · · · u L′

n′)

u ∀Rj .DESCR(BCC(s, C ′
1))

u · · ·

u ∀Rj .DESCR(BCC(s, C ′
n′))]

t · · · t

[K(Rj)

u ∀Rj .DESCR(BCC(dashed, Cp))

u ∀Rj .(L
′
1 u · · · u L′

n′)

u ∀Rj .DESCR(BCC(s, C ′
1))

u · · ·

u ∀Rj .DESCR(BCC(s, C ′
n′))]

(for any s ∈ {solid,dashed}). This, by the inductive
hypothesis, is equivalent to

[K(Rj)

u ∀Rj .(L
′′
1 t · · · t L′′

m′′)

u ∀Rj .(L
′
1 u · · · u L′

n′)

u ∀Rj .C
′
1 u · · · u ∀Rj .C

′
n′ ]

t

[K(Rj)

u ∀Rj .Cm′′+1

u ∀Rj .(L
′
1 u · · · u L′

n′)

u ∀Rj .C
′
1 u · · · u ∀Rj .C

′
n′ ]

t · · ·
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t

[K(Rj)

u ∀Rj .Cp

u ∀Rj .(L
′
1 u · · · u L′

n′)

u ∀Rj .C
′
1 u · · · u ∀Rj .C

′
n′ ]

which is equivalent to Aj .

Case 8: n = 0, p > 0, q > 0
In this case,

Aj = ∀Rj .[(C1 uD) t · · · t (Cp uD)]

u ∃Rj .F1 u · · · u ∃Rj .Fq uK(Rj)

Then BARROW(Aj) will be

(arrow solid (Rj)(K(Rj))
(cases

(box
(label(D))
(BCC(solid, F1) · · ·BCC(solid, Fq))
((BCC(dashed, L′′

1 t · · · t L′′
m′′)))

(arrows(D)))
(box

(label(D))
(BCC(solid, F1) · · ·BCC(solid, Fq))
((BCC(dashed, Cm′′+1)))
(arrows(D)))
...

(box
(label(D))
(BCC(solid, F1) · · ·BCC(solid, Fq))
((BCC(dashed, Cp)))
(arrows(D)))))

where, without loss of generality, we have rewritten the
descriptions

C1, . . . , Cp

so as to group all literals first, followed by all nonliter-
als:

L′′
1 , . . . , L

′′
m′′ , Cm′′+1, . . . , Cp

As in case 3, we define label(D) to be

(AND L′
1 · · ·L′

n′)

and arrows(D) to be

(BARROW(C′
1) · · ·BARROW(C′

m′))

Again, as in case 7, several box cases may be gen-
erated. When we apply BDESCR, each case will corre-
spond to one disjunct in BDESCR(BARROW(Aj)):

[K(Rj)

u ∀Rj .DESCR(

BCC(dashed, L′′
1 t · · · t L′′

m′′))

u ∀Rj .(L
′
1 u · · · u L′

n′)

u ∀Rj .BDESCR(BARROW(C ′
1))

u · · ·

u ∀Rj .BDESCR(BARROW(C ′
n′))

u ∃Rj .DESCR(BCC(solid, F1))

u · · ·

u ∃Rj .DESCR(BCC(solid, Fq))]

t [K(Rj)

u ∀Rj .DESCR(BCC(dashed, Cm′′+1))

u ∀Rj .(L
′
1 u · · · u L′

n′)

u ∀Rj .BDESCR(BARROW(C ′
1))

u · · ·

u ∀Rj .BDESCR(BARROW(C ′
n′))

u ∃Rj .DESCR(BCC(solid, F1))

u · · ·

u ∃Rj .DESCR(BCC(solid, Fq))]

t · · · t

[K(Rj)

u ∀Rj .DESCR(BCC(dashed, Cp))

u ∀Rj .(L
′
1 u · · · u L′

n′)

u ∀Rj .BDESCR(BARROW(C ′
1))

u · · ·

u ∀Rj .BDESCR(BARROW(C ′
n′))

u ∃Rj .DESCR(BCC(solid, F1))

u · · ·

u ∃Rj .DESCR(BCC(solid, Fq))]
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By the lemma, this is equivalent to

[K(Rj)

u ∀Rj .DESCR(

BCC(dashed, L′′
1 t · · · t L′′

m′′))

u ∀Rj .(L
′
1 u · · · u L′

n′)

u ∀Rj .DESCR(BCC(s, C ′
1))

u · · ·

u ∀Rj .DESCR(BCC(s, C ′
n′))

u ∃Rj .DESCR(BCC(solid, F1))

u · · ·

u ∃Rj .DESCR(BCC(solid, Fq))]

t [K(Rj)

u ∀Rj .DESCR(BCC(dashed, Cm′′+1))

u ∀Rj .(L
′
1 u · · · u L′

n′)

u ∀Rj .DESCR(BCC(s, C ′
1))

u · · ·

u ∀Rj .DESCR(BCC(s, C ′
n′))

u ∃Rj .DESCR(BCC(solid, F1))

u · · ·

u ∃Rj .DESCR(BCC(solid, Fq))]

t · · · t

[K(Rj)

u ∀Rj .DESCR(BCC(dashed, Cp))

u ∀Rj .(L
′
1 u · · · u L′

n′)

u ∀Rj .DESCR(BCC(s, C ′
1))

u · · ·

u ∀Rj .DESCR(BCC(s, C ′
n′))

u ∃Rj .DESCR(BCC(solid, F1))

u · · ·

u ∃Rj .DESCR(BCC(solid, Fq))]

(for any s ∈ {solid,dashed}).
This, by the inductive hypothesis, is equivalent to

[K(Rj)

u ∀Rj .(L
′′
1 t · · · t L′′

m′′)

u ∀Rj .(L
′
1 u · · · u L′

n′)

u ∀Rj .C
′
1 u · · · u ∀Rj .C

′
n′

u ∃Rj .F1 u · · · u ∃Rj .Fq]

t

[K(Rj)

u ∀Rj .Cm′′+1

u ∀Rj .(L
′
1 u · · · u L′

n′)

u ∀Rj .C
′
1 u · · · u ∀Rj .C

′
n′

u ∃Rj .F1 u · · · u ∃Rj .Fq]

t · · · t

[K(Rj)

u ∀Rj .Cp

u ∀Rj .(L
′
1 u · · · u L′

n′)

u ∀Rj .C
′
1 u · · · u ∀Rj .C

′
n′

u ∃Rj .F1 u · · · u ∃Rj .Fq]

which is equivalent to Aj .


