
Visualizing the Semantics (Not the Syntax)
of Concept Descriptions∗

Fernando Náufel do Amaral
LLARC – Laboratório de Lógica e Representação do Conhecimento

Departamento de Ciência e Tecnologia
Pólo Universitário de Rio das Ostras

Universidade Federal Fluminense
Rio das Ostras, RJ, Brasil

fnaufel@ic.uff.br

ABSTRACT
The development and use of ontologies may require users
with no training in formal logic to handle complex concept
descriptions (e.g., in the form of necessary conditions in class
definitions). To aid such users, alternative representations
of concept descriptions have been proposed, such as natu-
ral language paraphrases and visualization frameworks. We
examine examples of those representations and propose a
novel visual framework, where more emphasis is placed on
the semantics of concept descriptions than on their syntax.

Categories and Subject Descriptors
I.2.4 [Knowledge Representation Formalisms and
Methods]: Representation languages

General Terms
Languages, Theory

1. INTRODUCTION
Not all people who use ontologies can write or understand
the complex concept descriptions that appear as conditions
in class definitions. In [9], for example, the authors show
how difficult it may be for rather technically sophisticated
users (e.g., Computer Science undergraduate and graduate
students) to come up with correct specifications of a suppos-
edly simple concept such as the class of Margherita pizzas.

End users of ontologies (including scholars from areas such
as Computer Science, Linguistics, Engineering or Medicine)
are usually not familiar with the various syntaxes used to
represent concept descriptions (DL, OWL, RDF, etc.), let
alone with the subtleties involved in their semantics. Since
one of the aims of the use of ontologies in the Semantic
Web is to make knowledge widely accessible, the problem

∗Work supported by research grant
APQ1 E-26/170.503/2007 from FAPERJ.

of finding easy-to-understand representations of concept de-
scriptions is an important one.

Efforts to present concept descriptions in more user-friendly
ways include (possibly controlled) natural language para-
phrases. Take, for example, the complex description in DL
syntax [1]:

∃hasChild.> u
∀hasChild.

¬((∃hasChild.¬Doctor) t (∃hasChild.Lawyer))

(1)

This description denotes the class of individuals that have
at least one child and all of whose children do not have non-
doctors or lawyers as children. In other words, it represents
individuals that have only doctors and non-lawyers as grand-
children. One way to make this description more readable
is to substitute keywords for logical symbols and to write
quantifiers in infix notation (e.g., hasChild SOME Lawyer
instead of ∃hasChild.Lawyer). This is the approach taken
by the the Manchester OWL syntax [6], which renders the
concept description in (1) as

(hasChild SOME Thing) AND

hasChild ONLY NOT

((hasChild SOME NOT Doctor)

OR (hasChild SOME Lawyer)))

(2)

A description in Manchester OWL syntax cannot be con-
sidered a true natural language paraphrase of a concept,
as its proximity to DL can in some cases produce results
as unintelligible to the untrained user as the original DL
syntax. If one wants to convert descriptions like (1) into
natural language, one must be careful enough to avoid im-
precisions. To this end, researchers have devised controlled
natural languages [10], whose vocabularies and grammars
are restricted in order to reduce ambiguity. An example of
such a language is ACE (Attempto Controlled English) [4],
in which one paraphrase of (1) would be1

Every A hasChilds something. No A hasChilds
something that hasChilds something that is not a
Doctor or that hasChilds a Lawyer.

(3)

1Translation produced by the OWL Verbalizer
(http://attempto.ifi.uzh.ch/site/docs/verbalizing_
owl_in_controlled_english.html). A class named A was
defined as equivalent to the description in (1).

Figure 1: Visualization of description (1) produced
by GrOWL.

Although more natural than (1) and (2), the nested rela-
tive clauses in (3) (“that hasChilds something that is . . . ”)
may confuse the reader. The rendition of ∀hasChild.¬(. . .)
as “No A hasChilds something that (. . .)” is a good solu-
tion here, arguably more readable than “Every A hasChilds
something that not (. . .)”. A noticeable issue is the inser-
tion, in the paraphrase, of class and property names (e.g.,
hasChild) that have been chosen by the author of the on-
tology according to criteria that do not take verbalization
into account. The ACE translator assumes that all property
names are verbs and handles such names accordingly, hence
the occurrences of the awkward “hasChilds”.

Alternatively, diagrammatic representations have been pro-
posed, and implementations of ontology browsers have been
based on these representations. However, many visualiza-
tion frameworks for concept descriptions are too faithful to
the syntax of the representation languages (e.g., DL, OWL,
RDF), a feature which may prevent users from grasping the
semantics of the concept descriptions. The visualization tool
GrOWL [8], for example, will produce the abstract syntax
tree in Figure 1 for the concept description in (1). While
correct, such a diagram reflects only the syntax of the con-
cept description. In order to understand the diagram, a user
must be familiar with the notation of Description Logic and
with the notion of syntax trees — more, in fact, than what
is needed to understand the original concept description!

This paper presents model outlines, which depart from the
syntax-based tradition in that they consist of diagrams char-
acterizing the class of models of a given concept description.
We hope this semantics-oriented visualization strategy will
allow users to obtain deeper insights about the meaning of
such descriptions, thereby preventing errors of design or of
interpretation.

The model outline for the example description in (1) is
shown in Figure 2. It depicts sets of individuals and the rela-
tions that must hold for them to satisfy the concept descrip-

Figure 2: Model outline for description (1)

tion. We follow the symbology established by the Protégé2

user interfaces in representing individuals as dark-colored di-
amonds. When cardinality restrictions are not present, the
number of individuals satisfying certain conditions is not im-
portant; therefore, so as not to mislead users into thinking
that only one individual is allowed in a certain situation, we
show a little cluster of diamonds.

The individuals in our model outlines are not named, since
their identity is not important and since we do not want to
clutter the display with unnecessary information. Instead,
we may label a cluster of individuals with a concept descrip-
tion consisting of a conjunction of literals or of a disjunction
of literals. An almost universally accepted graphical con-
vention is that dashed lines and grayed-out regions invoke
the idea of absence. We use this convention to indicate that
an individual will satisfy (1) even if that individual has no
grandchildren, a possibility that may be overlooked by some-
one with little or no knowledge of the semantics of DL.

This paper is structured as follows: Sect. 2 presents the
syntax of model outlines for the description logic ALCN ,
at the concrete (token) and at the abstract (type) levels,
as is suitable for diagrammatic systems [7]; Sect. 3 defines
the precise semantics of model outlines, in the form of an
algorithm that converts model outlines to ALCN concept
descriptions3; Sect. 4 offers a simple example to illustrate
the potential benefits of model outlines; and Sect. 5 contains
a brief discussion.

2. SYNTAX OF MODEL OUTLINES
We consider the description logic ALCN , whose language of
concept descriptions is specified in Figure 3, both in the
DL syntax and in the Manchester OWL syntax. In the
grammar, A stands for a class name (i.e., an atomic con-
cept term), R stands for a property name (i.e., an atomic
role term), and n represents a natural number. The (set-
theoretical) meaning of these descriptions is given by a non-
empty set ∆ (the universe or domain) along with an in-
terpretation I mapping each concept description C to a
set I(C) ⊆ ∆, and each role term R to a binary relation
I(R) ⊆ ∆×∆. An interpretation I must map each descrip-
tion in the first column to the set given in the last column.
#S denotes the cardinality of a set S. A literal is a descrip-
tion of the form A or of the form ¬A, where A is an atomic
concept term.

The concrete syntax defines the physical representation of
model outlines. What follows is an informal presentation:
a model outline contains clusters (solid or dashed), arrows

2http://protege.stanford.edu
3The construction of a model outline from a given concept
description is not covered here. An algorithm for this task
is presented in [3], along with further results.

DL Manchester OWL Meaning
C, D → A A I(A)

| > THING ∆
| ⊥ NOTHING ∅
| ¬C NOT C ∆− I(C)
| C uD C AND D I(C) ∩ I(D)
| C tD C OR D I(C) ∪ I(D)
| ∀R.C R ONLY C {a ∈ ∆ | ∀b.[(a, b) ∈ I(R)⇒ b ∈ I(C)]}
| ∃R.C R SOME C {a ∈ ∆ | ∃b.[(a, b) ∈ I(R) ∧ b ∈ I(C)]}
| ≤ n.R R MAX n {a ∈ ∆ | #{b | (a, b) ∈ I(R)} ≤ n}
| ≥ n.R R MIN n {a ∈ ∆ | #{b | (a, b) ∈ I(R)} ≥ n}
| = n.R R EXACTLY n {a ∈ ∆ | #{b | (a, b) ∈ I(R)} = n}

Figure 3: ALCN concept descriptions and their meaning

Figure 4: Example model outline

(solid or dashed) and boxes. The root of the model outline
is a solid cluster. A cluster may have an optional class label
below it, consisting of a disjunction or of a conjunction of
literals. So may a box. A box may also have an optional
cardinality label below it, consisting of a collection of natural
number intervals. A natural number interval may contain
a single number, in which case it is degenerate. A natural
number interval may be infinite. The source of an arrow may
be a cluster or a box. The target of an arrow is always a box.
Each box is the target of exactly one arrow. An arrow must
have a role label above it, consisting of a role name. A box
contains one or more clusters, according to constraints that
we do not include in this informal description, but which
will be made explicit in the abstract syntax below. A box
may also contain at most one “among-which” oval, which in
turn contains one or more clusters, all of them solid. A box
or a cluster may have a case widget above it.

Figure 5: Case widgets

Figure 4 shows an example model outline. The target box
of the arrow labeled “R” has both a class label and a car-
dinality label (which includes a degenerate number interval
consisting of the number 5). The target box of the arrow
labeled “S” has a cardinality label including an infinite in-
terval starting at 4. The target box of the arrow labeled
“U ” has an “among-which” oval. This model outline does
not have case widgets.

Case widgets indicate alternatives (i.e., disjunction). If a
cluster or a box has a case widget above it, we show the user
one case at a time. In Figure 5, e.g., there are 4 cases al-
together, specifying individuals that either (a) are members
of C and are only related through R to individuals belong-
ing to D or to E (if any), or (b) are members of F and are
related through R to at least one individual belonging to G
or to H. More formally, Figure 5 represents the description
(C u ∀R.(D t E)) t (F u ∃R.(G tH)).

As for the abstract syntax, a model outline is formally defined
as a LISP-style list generated by the grammar in Figure 6,
given in extended BNF notation. For example, the model
outline in Figure 5 corresponds to the list

(cases (cluster solid (C)((arrow dashed (R)
(cases (box ()()(cases (cluster dashed (D)()))()())

(box ()()(cases (cluster dashed (E)()))()())))))
(cluster solid (F)((arrow solid (R)(cases (box ()()

(cases (cluster solid (G)())
(cluster solid (H)()))(cluster dashed ()())()))))))

〈outline〉 → 〈solidClusterCases〉
〈solidClusterCases〉 → (cases 〈solidCluster〉+)

〈solidCluster〉 → (cluster solid 〈classLabel〉 (〈arrow〉?))
〈classLabel〉 → () | (〈literal〉) | (and 〈literal〉 〈literal〉+) | (or 〈literal〉 〈literal〉+)
〈literal〉 → 〈conceptName〉 | (not 〈conceptName〉)
〈arrow〉 → (arrow solid 〈arrowLabel〉 〈solidBoxCases〉)

| (arrow dashed 〈arrowLabel〉 〈dashedBoxCases〉)
〈arrowLabel〉 → (〈roleName〉)

〈solidBoxCases〉 → (cases 〈solidBox〉+)
〈solidBox〉 → (box 〈classLabel〉 (〈interval〉?) (〈cluster〉+) 〈opt〉 (〈arrow〉?))
〈interval〉 → (〈number〉 〈number〉) | (〈number〉 infty)
〈cluster〉 → 〈solidClusterCases〉
〈opt〉 → () | 〈unlabeledCluster〉 | 〈oval〉

〈unlabeledCluster〉 → (cluster dashed () ())
〈oval〉 → (oval 〈cluster〉+)

〈dashedBoxCases〉 → (cases 〈dashedBox〉+)
〈dashedBox〉 → (box 〈classLabel〉 (〈interval〉?) (〈dashedCluster〉) () (〈arrow〉?))

〈dashedCluster〉 → (cases (cluster dashed 〈classLabel〉 ()))

Figure 6: Abstract, formal syntax for ALCN model outlines

Of course, the list representation is not meant for human
consumption, but rather for automatic processing by algo-
rithms such as the one presented in the next section.

3. SEMANTICS OF MODEL OUTLINES
We define the precise semantics of a model outline by means
of the recursive algorithm Descr, which, when given a clus-
ter C, yields the ALCN concept description taken as the
meaning of C. Applying the algorithm to the root cluster
of a model outline yields the concept description denoted by
the entire model outline. Algorithm Descr calls algorithm
BoxDescr to build the concept description denoted by a
box. Both algorithms are given in Figure 10, at the end of
the paper.

The reader should refer to the grammar in Figure 6 for the
structure of the lists that the algorithms manipulate. These
algorithms may be made more efficient, both in their running
time and in the legibility of the output concept description.
Here, their only purpose is to serve as the precise semantics
of model outlines. As an example, when given as input the
model outline in Figure 2, algorithm Descr returns the de-
scription ⊥t (>u∃hasChild.(⊥t (∀hasChild.(⊥t (Doctoru
¬Lawyer)) u >))).

4. A SIMPLE EXAMPLE
To show how model outlines may help prevent modeling er-
rors, we compare three attempts to specify a Margherita
pizza (see the discussion in [9]). The correct model outline
and DL concept description are shown in Figure 7, mean-
ing that a Margherita pizza is any pizza having exactly two
toppings: mozzarella and tomato.

If the specifier forgets to include the closure axiom (i.e.,
∀hasTopping.(Mozzarella t Tomato)), the resulting specifi-
cation will allow additional toppings, something that is in-
dicated by the presence of the unlabeled cluster in the model
outline in Figure 8.

Now, if the existential assertions are forgotten instead, the

dashed/grayed out objects in the resulting model outline
(Figure 9) will alert the user to the fact that this specifica-
tion can be vacuously satisfied by a pizza with no toppings,
and the label “Mozzarella OR Tomato” will make it clear
that a pizza having only one of those toppings still satisfies
this specification.

Pizza u
∃hasTopping.Mozzarella
u ∃hasTopping.Tomato
u ∀hasTopping.
(Mozzarella t Tomato)

Figure 7: Correct Margherita pizza specification

Pizza u
∃hasTopping.Mozzarella
u ∃hasTopping.Tomato

Figure 8: Incorrect Margherita pizza specification

Pizza u
∀hasTopping.
(Mozzarella t Tomato)

Figure 9: Incorrect Margherita pizza specification

For the sake of comparison with a natural-language based
approach, we list below the ACE paraphrases of those three
specifications, omitting the sentence“Every MargheritaPizza
is a Pizza”, common to all three paraphrases:

Fig. 7: Every MargheritaPizza hasToppings a Tomato.
Every MargheritaPizza hasToppings a Mozzarella.
No MargheritaPizza hasToppings something that is not
something that is a Mozzarella or that is a Tomato.

Fig. 8: Every MargheritaPizza hasToppings a Tomato.
Every MargheritaPizza hasToppings a Mozzarella.

Fig. 9: No MargheritaPizza hasToppings something that is
not something that is a Mozzarella or that is a Tomato.

5. DISCUSSION

Visual vs. verbal. We favor the use of visual frameworks
because they are, in a certain sense, more fundamental than
verbal representations. Indeed, in [5], the author says that

“visual languages may provide the bridge between
the verbal expression of ideas and their logical ex-
plication. Perhaps not, but it is still a worthy
objective. [. . .] We also need to facilitate the
adoption and use of formal visual languages and
their associated inference capabilities in scholarly
communities that may have little knowledge, or
sympathy with, formal logic, but might find the
insights it can provide of value to their own en-
deavors.”

In [2], the authors express their belief that

“many of the problems people have putting their
knowledge of logic to work, whether in machines
or in their own lives, stems from the logocentric-
ity that has pervaded its study for the past hun-
dred years.”

However, logocentric and diagrammatic approaches to the
representation of concepts are not mutually exclusive; in
fact, since human beings are fluent in both modes of com-
munication (verbal and pictorial), we believe these modes
can complement each other to great benefit. When the aim
is to convey structure (such as in concept descriptions with
many nested quantified subdescriptions), diagrams are clear
and concise, whereas textual accounts usually turn out to
be verbose and hard to follow, with many nested relative
clauses. In this respect, it is interesting to notice that one
common technique to make these textual descriptions read-
able is to present them as a list of items, using levels of inden-
tation to make the structure apparent; well, these indented
lists are, in a way, an attempt at giving a diagrammatic fla-
vor to the text! On the other hand, simple situations (e.g.,
“a person that only has doctors and non-lawyers as grand-
children”) may be easier to understand as natural language
paraphrases. This suggests that our model outlines should
be enhanced with textual descriptions: when the user hovers
the mouse over a visual item (a box or a cluster), a tooltip
may appear with a natural language paraphrase of the (lo-
cal) constraints that the corresponding individual or set of
individuals must satisfy. One advantage of this combina-
tion is that, along time, the coexistence of text and diagram
will contribute to reinforce the user’s understanding of our

diagrammatic notation and of the peculiarities of complex
textual descriptions.

Diagrammatic reasoning and explanation. Because this
paper does not focus on the construction of model outlines,
it has not emphasized the role of (logical) simplification. In
building the model outline of Figure 2 for the description
in (1), a suitable set of rewrite rules has been applied. If the
user so desires, he may request to view the application of
such rules in a dynamic, step-by-step fashion (e.g., through
animation). This constitutes a form of diagrammatic reason-
ing. We believe that, with suitable presentation strategies,
the application of diagrammatic rewrite rules can be rather
intuitive, even for nonspecialist users. This indicates that
model outlines could be useful in the context of proof ex-
planation (besides concept construction and visualization),
a possibility that we are currently investigating.

6. REFERENCES
[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi,

and P. Patel-Schneider, editors. The Description Logic
Handbook. Cambridge University Press, 2nd edition,
2007.

[2] J. Barwise and J. Etchemendy. Heterogeneous logic.
In J. Glasgow, N. H. Narayanan, and
B. Chandrasekaran, editors, Diagrammatic Reasoning:
Cognitive and Computational Perspectives, pages
211–234. MIT Press, Cambridge, UK, 1995.

[3] F. N. do Amaral and C. Baźılio. Visualization of
Description Logic models. In The 21st International
Workshop on Description Logics (DL2008), Dresden,
Germany, 2008.

[4] N. E. Fuchs, K. Kaljurand, and G. Schneider.
Attempto Controlled English meets the challenges of
knowledge representation, reasoning, interoperability
and user interfaces. In FLAIRS 2006, 2006.

[5] B. R. Gaines. Designing visual languages for
Description Logics. Journal of Logic, Language and
Information, 2008. To appear.

[6] M. Horridge, N. Drummond, J. Goodwin, A. Rector,
R. Stevens, and H. Wan. The Manchester OWL
syntax. In OWL: Experiences and Directions, 2006.

[7] J. Howse, F. Molina, S.-J. Shin, and J. Taylor. On
diagram tokens and types. In DIAGRAMS ’02:
Proceedings of the Second International Conference on
Diagrammatic Representation and Inference, pages
146–160, London, UK, 2002. Springer-Verlag.

[8] S. Krivov, R. Williams, and F. Villa. GrOWL: A tool
for visualization and editing of OWL ontologies.
Journal of Web Semantics, 5(2):54–57, 2007.

[9] A. Rector, N. Drummond, M. Horridge, J. Rogers,
H. Knublauch, R. Stevens, H. Wang, and C. Wroe.
OWL pizzas: Practical experience of teaching
OWL-DL: Common errors & common patterns. In
Engineering Knowledge in the Age of the
SemanticWeb, volume 3257 of LNCS, 2004.

[10] R. Schwitter, K. Kaljurand, A. Cregan, C. Dolbear,
and G. Hart. A Comparison of three Controlled
Natural Languages for OWL 1.1. In 4th OWL
Experiences and Directions Workshop (OWLED 2008
DC), Washington, 2008.

Descr(C)

� C is of the form (cases C1 · · ·Cm)
1 Descr ← ⊥
2 for each Ci in C1, . . . , Cm

� Ci is of the form (cluster solid L (A1 · · ·An))
3 do if L = ()
4 then Case ← >
5 else Case ← L
6 for each Aj in A1, . . . , An

7 do Case ← Case uBoxDescr(Aj)
8 Descr ← Descr tCase
9 return Descr

BoxDescr(A)

� A is of the form (arrow S AL (cases B1 · · ·Bm))
1 BDescr ← ⊥
2 for each Bi in B1 · · ·Bm

� Bi is of the form (boxBL (I1 · · · In) (C1 · · ·Cp)Opt (A′
1 · · ·A′

q))
3 do Universal ← ⊥; Existentials ← >
4 for each Cj in C1, . . . , Cp

5 do Universal ← Universal tDescr(Cj)
6 if Cj is of the form (cluster solid . . .)
7 then Existentials ← Existentials u ∃AL .Descr(Cj)
8 Universal ← ∀AL .(Universal)
9 if Opt is of the form (oval C′

1 · · ·C′
r)

10 then for each C′
j in C′

1, . . . , C
′
r

11 do Existentials ← Existentials u ∃AL .Descr(C′
j)

12 if BL = ()
13 then BCase ← Universal u Existentials
14 else BCase ← BL u Universal u Existentials
15 if n > 0
16 then Card ← ⊥
17 for each Ij in I1, . . . , In

� Ij is of the form (X Y)
18 do if Y = infty
19 then Card ← (Card t ≥ X.AL)
20 else Card ← (Card t (≥ X.AL u ≤ Y.AL))
21 BCase ← BCase u Card
22 for each A′

j in A′
1, . . . , A

′
q

23 do BCase ← BCase u ∀AL .BoxDescr(A′
j)

24 BDescr ← BDescr tBCase
25 return BDescr

Figure 10: Algorithms to produce a concept description for a cluster C

