
An Ontology-based Approach to the Formalization
of Information Security Policies

Fernando Náufel do Amaral
TecMF, DI, PUC-Rio, Brazil
DICC, IME, UERJ, Brazil

Email: fnaufel@inf.puc-rio.br
fnaufel@ime.uerj.br

Carlos Bazílio
Geiza Maria Hamazaki da Silva

Alexandre Rademaker
Edward Hermann Haeusler
TecMF, DI, PUC-Rio, Brazil

Email: {bazilio, hamazaki, arademaker, hermann}@inf.puc-rio.br

Abstract— We present the structure of an ontology for Infor-
mation Security (IS) and discuss a paradigm whereby it can be
used to extract knowledge from natural language texts such as
IS standards, security policies and security control descriptions.
Besides providing a vocabulary for the IS domain, the proposed
ontology stores logical forms corresponding to statements in the
text, as well as a set of axioms used for inference in description
logic (DL). We also describe a tool to provide automatic support
for the formalization process.

I. INTRODUCTION

The formalization of text-based information is an important
issue in the deployment of semantics-aware technologies in
the enterprise. It is very common to encounter situations
where knowledge stored in natural-language documents must
be made available to agents (human or software-based) for
processing and decision-making. This paper discusses the
principles involved in an ontology-based approach to the
formalization of normative texts in the domain of Information
Security (IS), such as security policies defined by organiza-
tions.

Because the IS-related terminology tends to vary according
to the source, we adopt the following definitions: a standard
is a public document consisting of a set of control objectives,
which are goals to be attained by the organization if a great
level of security is desired. Roughly speaking, control objec-
tives state what should be achieved; being expressed at a rather
high level of abstraction, they do not lend themselves to direct
application to the organization’s processes and practices. It is
by means of security controls that the organization actually
specifies how to achieve the security requirements laid out by
the control objectives. Security controls (or simply controls)
are low-level technical measures that can be deployed in order
to protect the organization’s devices and processes against
potential threats. To bridge the gap between high-level control
objectives and low-level controls, the organization defines its
security policy, consisting of actions to be taken in order to
comply with the adopted standards and possibly with other
security requirements identified by a process of risk analysis.
In this scenario, one control objective may give rise to several
different actions in the security policy, and each of those
actions may be implemented by a set of different controls.

Many tasks are involved in the process described above:

for example, standards must be selected, actions must be
formulated, controls must be defined, deployed and managed.
Furthermore, all levels must support maintenance: updates in
the standards must be followed, policies must be revised, and
controls must be replaced or incremented because they become
ineffective, inapplicable or simply insufficient. It should be
clear that security experts can greatly benefit from the use of
semi-automatic, knowledge-based tools to assist them in these
activities.

In this paper, we discuss the use of tools and techniques
from the fields of natural language understanding, description
logics and ontologies to formalize (and extract knowledge
from) natural-language texts. We argue that these tools and
techniques can be useful not only in the semi-automatic
formulation of security policies, but also in the validation
of security controls against the policies which the controls
are supposed to implement. It should be noted, however,
that we do not touch on issues related to the extraction or
the deployment of technical controls from the actions in the
policies.

The remainder of this paper is organized as follows: Sect. II
presents an overview of our proposed approach; Sect. III pro-
vides some of the necessary background on natural language
understanding, description logics and ontologies; Sect. IV
details the IS ontology on which our approach is based;
Sect. V illustrates our ideas with a simple example; Sect. VI
considers the capabilities of an integrated tool to assist in the
formalization of texts; Sect. VII discusses related work and
offers our concluding remarks.

II. FORMAL SPECIFICATION OF SECURITY POLICIES

At the center of our proposal is the idea that defining formal
objects to represent the actions in security policies can be
beneficial in more than one way: from the point of view
of documentation, formalized policies are more precise than
their informal counterparts; in what concerns communication,
formalized policies may be automatically converted to what-
ever presentation formats are convenient on a given occasion
(hypertext, graphs, diagrams etc.); as for adequacy, the fact
that formalized policies have a well-defined semantics allows
one to check them for logical consistency; furthermore, the
relationships between the actions of a formalized policy can



be explored (so as to detect redundancy, for example); finally,
if low-level security controls are also formally specified, each
action in the policy can be automatically associated (via logical
inference) to the set of controls that implement it.

As for the relationships between IS standards, actions and
controls, we envision two paradigms for the application of
our formal approach: the top-down paradigm starts with the
analysis of IS standards (which can also be made formal
through the use of techniques similar to the ones discussed
in this paper) in order to generate the actions in a policy,
which in turn can be refined to produce sets of (descriptions
of) technical controls; the bottom-up paradigm presupposes the
existence of a (formal or informal) database of controls, which
are analyzed and aggregated into actions; the resulting policy
can be checked for compliance with the standards adopted by
the organization, and the preexisting control database can then
be checked for consistency and completeness with respect to
the adopted standards.

Our proposed approach consists of the following elements,
to be detailed in the subsequent sections:

• Actions are represented at the logical form level, a con-
cept from the area of natural language understanding [1].
Basically, logical forms are constructs in some suit-
able formalism used to represent the context-independent
semantics of natural language utterances. Conceptual
graphs [2] are frequently used as such a formalism.
The logical forms employed in our approach somewhat
resemble conceptual graphs, but we also draw from other
sources, as described in Sect. III-A below.

• The inference capabilities of the proposed framework are
based on a description logic (DL) [3]. Logical forms
representing actions are actually stored as DL concepts,
and the facts that must hold about these concepts are
stored as DL axioms. The user may pose queries to a
DL reasoner, which will provide answers based on these
axioms. Some background on DL is provided in Sect. III-
B below.

• Ontologies [4] serve as the unifying structure for the
above two elements. As briefly described in Sect. III-C,
an ontology consists of concepts, properties and logical
expressions denoting constraints that hold between these
concepts and properties. In our approach, actions in
logical form and axioms about them are expressed in
terms of these concepts, properties and constraints. One
language for representing ontologies is OWL DL [5],
which can be translated in a straightforward way to the
language used by DL reasoners, providing for an easy
interface between the ontology and the inference services
of our framework.

Fig. 1 depicts these elements.

III. BACKGROUND

This section provides a very brief introduction to natural
language understanding techniques, description logics and
ontologies. Potential readers of this paper come from widely
varying backgrounds, so readers already familiar with these

Fig. 1. Elements of our ontology-based approach

areas may find the exposition overly superficial and simplistic
at places.

A. Natural Language Understanding

Natural language understanding involves several forms of
knowledge, such as phonology, morphology, syntax, seman-
tics, pragmatics, discourse knowledge and world knowledge.
Since the 1960’s, a host of techniques have been created to deal
with the problems posed by each of these aspects of natural
language analysis.

As mentioned, we propose a formalization assistant to help
the user extract the semantics of actions in security policies.
Since the input texts are in written form, phonology plays
no role here; as for morphology and syntax, the proposed tool
(being an interactive assistant) provides only very rudimentary
resources for tokenization and sentence splitting, relying on
the user for the rest.

Most relevant to our application are problems related to the
extraction and representation of semantics (i.e., the context-
independent meaning of natural language sentences and texts).
As described later on in the paper, the meaning of an action
in the policy must be converted to a logical form and stored
in our IS ontology.

We say we are concerned with the context-independent
meaning of the actions because the formalization tool does
not have to worry about pragmatics, discourse knowledge and
world knowledge. For example, the tool does not have to verify
whether a well-formed and meaningful sentence is relevant
to the subject matter of the policy (pragmatics); neither does
it have to discover the referents of the pronouns found in a



sentence (discourse analysis).
As for world knowledge, useful information about the

IS domain is stored in our ontology and available to the
formalization tool, which can (to a certain extent) guide and
restrain the user from creating semantically ill-formed logical
forms.

The logical form we use is based on thematic roles [1]. The
idea is that the meaning of a word is not so intimately related
to its grammatical function in the sentence (e.g., subject, direct
object, indirect object, etc.), but rather to the semantic role
it plays with respect to the verb. One semantic role may
manifest itself as different grammatical functions: for example,
in the sentences “The manager configures the system” and
“The system is configured by the manager”, the role of agent
is played by “the manager”, which appears as subject in
one sentence and agent (of the passive voice) in the other.
Likewise, the role of theme (i.e., the entity which is affected
by the event) is played by “the system”, which functions as
direct object in the first sentence and as subject in the second
sentence.

Thematic roles are at a higher level of abstraction than
grammatical functions. This provides for more general rep-
resentations of sentences, allowing for a deeper analysis of
(the relationships between) the meanings of sentences.

Thematic roles have much to do with the notion of case
relations (e.g., nominative, genitive, dative, accusative, etc.),
but there is no one-to-one mapping between the two notions, as
one thematic role can correspond to different cases in different
sentences.

Thematic roles also appear in conceptual graphs [2], in the
form of case frames. We have extended the notion so as to
allow thematic roles to be associated to parts of speech other
than verbs.

In our approach, we encode logical forms as DL concept
expressions. Examples of this encoding and of the thematic
roles used in our work are shown in Sect. IV-B and in Sect. V.

B. Description Logics and Ontologies

DL [3] is a name that refers to any of several logi-
cal languages commonly used in knowledge representation.
Such languages have evolved from knowledge representation
schemes from the 1970’s, like semantic networks and frames.

In DL, concept terms describe classes of individuals in some
universe, while role terms (also called properties) represent
binary relations connecting individuals. For our purposes, the
syntax of concept terms and properties is defined by the
grammar

C,D → A (atomic concept)
| > (universal concept)
| ⊥ (empty concept)
| ¬C (negation)
| C uD (intersection)
| C tD (union)
| ∀R.C (value restriction)
| ∃R.C (existential quantification)

where R represents role names (the only kind of role terms).
This corresponds to the logical language known as ALC.

One of the usual ways to interpret concept terms is by
translating them to set-theoretical expressions. Formally, an
interpretation is defined as a mapping I from concept terms
to sets of individuals in a universe ∆ and from role terms to
binary relations over ∆ satisfying the following conditions:

I(>) = ∆
I(⊥) = ∅

I(¬C) = ∆− I(C)
I(C uD) = I(C) ∩ I(D)
I(C tD) = I(C) ∪ I(D)
I(∀R.C) = {a ∈ ∆ | ∀b.[(a, b) ∈ I(R) ⇒ b ∈ I(C)]}
I(∃R.C) = {a ∈ ∆ | ∃b.[(a, b) ∈ I(R) ∧ b ∈ I(C)]}

If an individual a belongs to the set represented by a concept
term C, we say that a is in C. If a pair (a, b) of individuals
are in the binary relation represented by R, we say that b is a
filler for property R of a.

Informally, a concept term of the form ∀R.C represents the
set of all individuals having all fillers for R (if any) in C.
A concept term of the form ∃R.C represents the set of all
individuals having at least one filler for R in C.

A DL subsumption formula, written C v D, represents a
statement to the effect that the class denoted by C is contained
in the class denoted by D. An equivalence formula C ≡ D
represents the statement that C subsumes D and D subsumes
C; i.e., both C and D denote the same class.

A TBox (for terminology) is a collection of DL subsumption
and equivalence formulae taken as axioms. The process of
inference or reasoning consists in discovering which DL
formulae are logical consequences of a TBox T .

C. Ontologies

For our purposes, an ontology [4] is simply a DL TBox.
There certainly are broader definitions of ontologies, where,
for example, a concept can be seen as an individual of a higher-
order universe, but they will not be necessary in our approach.

The most common use of ontologies is in storing a taxon-
omy of concepts in a certain domain of knowledge. From a DL
point of view, this taxonomy is defined in terms of inheritance,
which is exactly the subsumption relation between concepts.
The concepts and properties in an ontology can be character-
ized by means of constraints expressed as DL formulae. The
reader should consult [3] for numerous examples.

Ontologies are usually defined in OWL [5] (Web Ontology
Language). OWL has a sublanguage (OWL DL) whose con-
structs coincide with those allowed in DL. The present article
uses only OWL DL.

An ontology can also contain annotation or metadata
properties. These are properties whose fillers are character
strings or other values that serve as documentation. One use
of an annotation property in our IS ontology is to store sets
of synonyms of words and phrases from the IS domain, as
described in Sect. IV-A below. Although technically not part
of DL, annotation properties are allowed in OWL DL.



IV. AN ONTOLOGY FOR THE IS DOMAIN

Our IS ontology is more than a mere vocabulary of IS-
related concepts. Its purpose is threefold: first, to store a
taxonomy for the IS domain; second, to store the logical forms
that represent actions in the organization’s security policy
(and possibly also the logical forms that represent control
descriptions); and third, to store axioms (DL subsumption and
equivalence formulae) in order to support inference in DL.
We discuss each of these elements below. Of course, these
elements (taxonomy, logical forms and axioms) are ultimately
stored in the ontology in the form of concepts, properties and
DL constraints, as described in the previous section.

A. IS Taxonomy

Besides defining a common vocabulary that users must
commit to, this section of the ontology is also meant to aid
in the task of extracting knowledge from natural language
texts. The idea of having the ontology include resources useful
to specific tasks follows recommendations found in [6], for
example, which promote that “these semantic resources cannot
be universal but should rather be domain- and even task-
specific in most cases.”

All concepts in this section of the ontology are subsumed by
the concept ISEntity. Each such concept represents an entity
from the IS domain. Most concepts here are named after nouns
or verbs, such as SoftwareClient, System, Configure, Encrypt,
etc.

To aid in the process of knowledge extraction from texts,
each concept is associated to a set of synonyms, much in
the style of Wordnet’s synsets [7]. In our implementation, a
concept is linked to its synset through the annotation property
hasSynSet. Our tool to assist in the formalization of policies,
described in Sect. VI below, sets up a dictionary containing the
strings that fill this property; whenever the user selects a word
or phrase in the text, the tool will search the dictionary and
show the concepts associated to the selected word or phrase.

Incidentally, while Wordnet offers a splendid collection of
resources for lexical resolution in knowledge extraction, it
is not well suited for our needs: for one thing, it does not
contain many of the simple terms and collocations frequently
used in the IS domain (e.g., “access control”). One other
difference is that in most cases our ontology does not — and
should not — distinguish between different parts of speech,
so as to render the constructed logical forms as general as
possible; thus, a noun whose root is shared with a verb is
represented by the concept associated to the verb; for example,
“connect” and “connection” are both associated to the single
concept Connect, and “configure” and “configuration” are both
associated to the single concept Configure. Of course, when
a noun is not related to any verbs, we represent the noun
by its own concept (e.g., Resource, Account, System). This
design decision is closely related to a guideline for thesaurus
construction contained in [8, Sect. 6.4], which states that all
concepts should be preferentially stored in noun form; we have
chosen verb form instead of noun form because the actions
in a security policy have verbs as their most important words.

Analogously, adjectives and adverbs which share the same root
and have similar senses, like “automatic” and “automatically”,
are both associated to an adjective concept — in this case,
Automatic. When formalizing a sentence with the help of
our tool, the distinction between noun and verb senses, or
between adjective and adverb senses, will be made clear upon
inspection of the role played by the concept in the logical form
representing the sentence.

B. Statements

This section of our ontology stores the formal represen-
tations of the actions that make up a security policy, and
possibly the formal representations of the security control
descriptions contained in a control database. Recall that actions
are statements pertaining to what should be done to protect the
organization against security threats, while security controls
are more concrete statements pertaining to how the actions
should be implemented. This arrangement suggests that one
of the main applications of the formalized statements is the
validation of actions and controls: one would like to verify,
for example, whether all actions are correctly implemented
by the controls, or whether every control implements exactly
one action. As will be detailed below, these questions can
be answered by classifying the ontology and checking which
controls are subsumed by which actions.

As mentioned, we store the sentences in actions and controls
in logical form. In order for validation to be possible, the
logical forms of actions and controls must be abstract enough
to allow for the detection of information common to high-level
and low-level statements, but not so abstract that important
details related to the low-level statements may be lost. Our
design decisions have been guided by the search for a satis-
factory tradeoff with respect to these conflicting requirements.
In particular, the following considerations have been made,
among others:

• A sentence containing terms from a certain part of speech
should yield the same logical form as a paraphrase
based on related terms from other parts of speech (e.g.,
“The manager is responsible for controlling access to the
server” and “Access control to the server is the manager’s
responsibility”);

• A sentence in the active voice and an equivalent sentence
in the passive voice should generate the same logical form
(e.g., “Access to the server should be controlled by the
manager” and “The manager should control access to the
server”);

• Certain sentences in the declarative mood should be
considered equivalent to sentences in the imperative mood
(e.g., “Access to the server is controlled” and “Control
access to the server”);

• Certain sentences in the causative voice are subsumed by
the corresponding sentence in the active voice (e.g. “Have
the manager control access to the server” is subsumed by
“Control access to the server”).

Some of these requirements are taken care of by the
constraints imposed by the logical representation; others are



satisfied via the adopted taxonomy (i.e., the choice of concepts
in the section of the ontology discussed in Sect. IV-A above),
while still others are enforced by axioms, as described in
Sect. IV-C below. In all cases, however, the logical form
must be flexible enough to allow this interaction between the
taxonomy and the axiom base.

It is perhaps impossible to include in the ontology a precise
definition of sentence equivalence that handles all the situa-
tions occurring in practice. In the cases that are not covered,
we can still rely on the formalization tool (Sect. VI) to provide
some degree of guidance by means of examples, tutorials or
online help.

We now describe how a statement is formalized in our on-
tology. We will discuss only actions, but the general principles
apply to control descriptions as well. Sect. V below presents
a detailed example that illustrates most considerations made
here.

An action is represented in the ontology by a subconcept
(say, Action0001) of the Action concept. The text of the action
is transformed into DL constraints that serve as necessary
and sufficient conditions defining the concept associated to
the action.

The most important element in an action is probably a verb;
so, the property hasVerb is provided in order to relate the
action concept to the appropriate verb concepts. For example,
if the text of the action represented by Action0001 is “The
manager should control access to the server”, the condition

∃hasVerb.ControlAccess

is added as a condition defining Action0001. Note, incidentally,
that “control access” is a collocation frequent enough in the
IS domain to merit its own atomic concept.

The agent of the verb, when present, is represented by
the hasAgent property. In the example, the condition defining
Action0001 is strengthened to

∃hasVerb.(ControlAccess u ∃hasAgent.Manager)

Finally, the theme of the verb is represented by the has-
Theme property, yielding the logical form:

∃hasVerb.(ControlAccess u
∃hasAgent.Manager u ∃hasTheme.Server)

Note that the result of the formalization is a concept
definition. No instances of any concepts are created. In other
words, our ontology is never populated with individuals, but
rather consists of a TBox (i.e., a set of terminological axioms,
as described in Sect. III-B above). It is worth mentioning that
some implementations of DL reasoners currently available do
not work well when individuals are present in the ontology,
being only equipped to receive TBoxes as input.

Of course, the effectiveness of this formalization scheme
depends on the available set of properties (thematic roles).
It is a common belief in the natural language understanding
literature [1] that an adequate set of thematic roles for most
situations need contain no more than some two dozen roles.
Some of the properties representing thematic roles in our

ontology (besides the ones already mentioned) are hasBenefi-
ciary, hasExperiencer, hasInstrument, hasLocation, hasMan-
ner, hasPossessor, hasPurpose, hasRecipient, and hasState.
This set has been drawn from [1], from the relations present
in examples using conceptual graphs [2], and from our own
practice. To facilitate the construction of the logical forms by
the user, the ontology also keeps the information of which
roles are more “naturally” associated to each concept — the
so-called inner roles of the concept. The concept Give, for
example, has the property hasRecipient as one of its inner
roles.

Our logical forms can be represented by rooted trees. This
will turn out to be convenient when presenting formalized
actions to a user, as discussed in Sect. VI below.

C. Axioms

The equivalences and subsumptions necessary to ensure
that sentences with closely related meanings are mapped to
the same logical form, as mentioned in Sect. IV-A above,
are stored in the ontology in the form of DL axioms. As
an example, the axiom that states that “configuring X to
achieve Y ” is equivalent to “achieving Y ” is encoded as the
DL equivalence formula

∃hasVerb.(Configure u ∃hasTheme.X u ∃hasPurpose.Y ) ≡
∃hasVerb.Y

To be more precise, this is a DL schema that represents a
(potentially infinite) number of DL formulae, and the inference
algorithm must be able to handle this kind of expression.

V. A SIMPLE EXAMPLE

Suppose the following action is part of the organization’s
security policy:

Configure every system to encrypt connections used
for remote access to the system.

The logical form representing this action is the concept
Action0002, defined as

Action0002 ≡
1 ∃hasVerb.(Configure u
2 ∃hasTheme.System u
3 ∃hasPurpose.(Encrypt u
4 ∃hasTheme.(NetworkConnect u
5 ∃isInstrumentOf.(AccessRemotely u
6 ∃hasTheme.System))))

where lines are numbered for reference. Note that the quanti-
fier “every” does not appear in the logical form. We establish
the convention that all concepts are universally quantified by
default. This stands in contrast with the semantics of concep-
tual graphs [2], where the default is existential quantification.
Note also that the filler of property hasPurpose in line 3 is
an embedded sentence (“encrypt connections used for remote
access to the system”). In line 4, concept NetworkConnect,
named after the verb, is used to represent the noun phrase
“network connection”. In line 5, the characterization of the



connections in question can be read as “those that serve as
instruments of remote access to the system”.

Now suppose the organization has deployed a security
control with the following description:

Network traffic for the remote administration of the
Netware server must be encrypted using SSL.

Being a control description, this statement is more concrete
than the action mentioned above. It can be formalized as

Control0001 ≡
1 ∃hasVerb.(Encrypt u
2 ∃hasTheme.NetworkTraffic u
3 ∃hasInstrument.SSL u
4 ∃hasPurpose.(AdministerRemotely u
5 ∃hasTheme.NetwareServer))

The sentence has been “converted” to the active voice as a
(desirable) artifact of the formalization.

We would like to infer that Control0001 actually implements
Action0002. This is done by proving that the concept repre-
senting the control is subsumed by the concept representing
the action, i.e., that the DL formula

Control0001 v Action0002

is provable. This can indeed be done by a reasoner, since the
following axioms are contained in the ontology:

• The schema given in Sect. IV-C stating that “configur-
ing X to achieve Y ” is equivalent to “achieving Y ”;

• The self-evident subsumption formula (actually, part of
the taxonomy)

AdministerRemotely v AccessRemotely

• The self-evident subsumption formula (actually, part of
the taxonomy)

NetwareServer v System

• The equivalence

Encrypt u ∃hasTheme.NetworkConnect ≡
Encrypt u ∃hasTheme.NetworkTraffic

stating that encrypting a network connection is synony-
mous with encrypting the network traffic.

Note that the presence of additional information in the
formalized control description (namely, in line 3, that the
encryption is done via SSL) does not interfere with the truth
of Control0001 v Action0002. In fact, the logical form
corresponding to a control description will usually mention
more properties (in this example, hasInstrument) than the
formalized action, since control descriptions are more detailed
than actions.

VI. A FORMALIZATION ASSISTANT

We are currently developing a tool to provide automatic sup-
port for the formalization of actions and control descriptions.
This section briefly describes some of features of the tool and
the principles involved.

Many tools have been proposed for the formalization and/or
annotation of natural language texts (see Sect. VII below), with
varying degrees of automation. We stress that the tool we are
developing is meant to be a formalization assistant, i.e., a user-
friendly front end providing convenient means to browse our
IS ontology and to scan a natural language text in order to
associate words and phrases in the text to the concepts and
properties that will make up the logical forms. During this
process, the tool suggests different context-sensitive choices
to the user, based on the information contained both in the
ontology and in the text. Moreover, the tool’s user interface is
designed so as to hide the DL syntax and the underlying formal
mechanisms from the user unfamiliar with logical notation and
inference.

Fig. 2 shows a snapshot of one of the perspectives of the
user interface, whose components we now describe.

• The Concepts and Properties frames on the left-hand
side allow the user to browse the IS taxonomy contained
in our ontology, obtaining not only a compact view of
the inheritance relationship, but also useful information
on the concepts and properties, such as usage hints,
associated synsets, occurrences in the axioms, etc., in the
form of tool tips or pop-up windows.

• The Text frame in the middle is a simple editor holding
the text or texts to be formalized. The user has the option
of constructing the text incrementally, alternating the
formulation of sentences with their formalization, or of
importing a fully-written text (e.g., a document describing
a security policy) in read-only mode and then proceeding
to its formalization. By selecting a word or phrase in the
text and clicking a mouse button, the user can see the
associated concepts and properties in the taxonomy; i.e.,
those containing in their synsets the selected text (or text
similar to the selected text, as the tool provides fuzzy
search in order to handle morphological inflections and
even spelling mistakes).

• The Logical Form frame presents a tree-based, user-
friendly rendition of the DL formulae corresponding
to natural language sentences that have already been
formalized or are undergoing formalization. Branches
of the trees can be conveniently collapsed or expanded
according to the user’s purposes. The user can choose
between having the labels in the trees contain the names
of the concepts in the taxonomy (e.g., NetworkConnect,
AccessRemotely) or the corresponding strings extracted
from the text (e.g., “connections”, “remote access”).
Whichever the choice, when the user selects a term in
the tree, the associated string is highlighted in the text.

Other features (not shown in the snapshot) include tree-
based views of the DL axioms contained in the ontology
and support for collaborative work, such as change logs and
versioning resources. Depending on the privileges of the user,
the formalization assistant can allow the IS taxonomy or
the axioms to be modified. Such modifications, however, are
stored separately so they can await revision and approval by



Fig. 2. A perspective of the formalization assistant

users possessing higher privileges (e.g., domain experts or
knowledge engineers).

We have decided in favor of a highly interactive formaliza-
tion assistant (as opposed to a tool with a greater degree of
automation) in order to maximize the use of human expertise
and in order to simplify the design and the implementation of
the tool.

IS policies contain very important and sensitive information,
and few, if any, security experts would agree to letting such
a policy be formalized in a fully automatic process, without
human intervention. Even for formalization and annotation
activities in other, less crucial domains, there are arguments in
favor of our human-centered approach, as can be found in [6]:
“text cannot be the only semantic resource of an annotation
process (. . . ) but human expertise is required to add either
more expertise or some common sense knowledge” (italics in
the original).

It could be argued that general-purpose ontology construc-
tion and browsing programs, such as Protégé [9], could be used
in the formalization process, but such programs do not hide
the underlying formalisms from the user, although, depending
on the architecture, dedicated plug-ins could be developed.

From the viewpoint of system design and implementation,
note that our formalization assistant does not need any com-
plicated algorithms for handling parsing, word sense disam-
biguation, named entity recognition, or anaphora resolution,

for example. Given an adequate interface, all these tasks can
be easily and effortlessly carried out — if necessary — by the
user. Of course, the texts to be formalized in the IS domain
tend to be rather objective and linguistically simple, so this is
not really a burden on the user.

The software architecture of our formalization assistant is
such that the underlying IS ontology can be replaced with
other ontologies, perhaps for different domains, provided some
architectural conventions are obeyed. This gives a nice degree
of genericity and portability to our tool, endowing it with great
potential for reuse.

VII. CONCLUSIONS

We are currently defining and studying the properties of
natural deduction and sequent-based inference engines for DL.
Traditionally, inference in DL has been based on tableaux [3],
but we believe that we have much to gain by turning to
other, non-refutation-based deductive calculi. One of our goals
is to provide the user with natural language explanations
extracted from DL proofs and failed proof attempts concerning
the relationships between actions and control descriptions in
logical form; natural deduction and sequents seem to be more
suitable for that than tableaux [10].

One way to profit from significant advances in the archi-
tecture of natural language processing tools is to continue
the development of our formalization assistant within the



context of GATE [11], which also offers ontology-related
resources [12].

We are aware of a number of articles describing IS-related
ontology-based models such as [13] and policy representation
and reasoning languages — see [14] for a comparative study.
Some of the approaches (see, e.g. [15]), like ours, are strongly
based on natural language processing techniques. Incidentally,
ontology-based text annotation [16] and ontology extraction
from text [17] are currently very busy areas of study, given
their importance for the deployment of the Semantic Web.

As our research project is still in its initial stage, it is perhaps
too early to draw definitive conclusions from a comparison
with these other approaches. There are quite a few different
directions our work may follow; input from academic work
inside and outside our group, and feedback from our industrial
partners are major influences in this process.

REFERENCES

[1] J. Allen, Natural Language Understanding, 2nd ed. Benjamin Cum-
mings, 1995.

[2] J. F. Sowa, Knowledge Representation: Logical, Philosophical, and
Computational Foundations. Brooks Cole Publishing Co., 2000.

[3] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-
Schneider, Eds., The Description Logic Handbook. Cambridge Uni-
versity Press, 2003.

[4] T. R. Gruber, “Towards principles for the design of ontologies used
for knowledge sharing,” in Formal Ontology in Conceptual Analysis
and Knowledge Representation, N. Guarino and R. Poli, Eds. Kluwer
Academic Publishers, 1993.

[5] M. Dean and G. Schreiber, “OWL Web Ontology Language Reference,”
http://www.w3.org/TR/owl-ref/, Feb. 2004.

[6] N. Aussenac-Gilles, “Supervised text analysis for ontology and termi-
nology engineering,” in Proc. of the Dagstuhl Seminar on Machine

Learning for the Semantic Web, N. Kushmerick, F. Ciravegna, A. Doan,
C. Knoblock, and S. Staab, Eds., 2005, available at http://www.smi.ucd.
ie/Dagstuhl-MLSW/proceedings/.

[7] C. Fellbaum, Ed., Wordnet: an Electronic Lexical Database. MIT Press,
1998.

[8] ANSI/NISO Z39.19-2005, Guidelines for the Construction, Format, and
Management of Monolingual Controlled Vocabularies, NISO, 2005.

[9] Stanford University, “The Protégé Ontology Editor and Knowledge
Acquisition System,” http://protege.stanford.edu, 2006.

[10] D. A. S. e Oliveira, C. S. de Souza, and E. H. Haeusler, “Structured Ar-
gument Generation in a Logic-Based KB-System,” in Logic, Language
and Computation, ser. CSLI Lecture Notes, L. S. Moss, J. Ginzburg,
and M. de Rijke, Eds. CSLI, 1999, vol. 2, no. 96, pp. 237–265.

[11] H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan, “GATE:
A framework and graphical development environment for robust NLP
tools and applications,” in Proc. of the 40th Anniversary Meeting of the
Association for Computational Linguistics, 2002.

[12] K. Bontcheva, V. Tablan, D. Maynard, and H. Cunningham, “Evolving
GATE to Meet New Challenges in Language Engineering,” Natural
Language Engineering, vol. 10, no. 3/4, pp. 349–373, 2004.

[13] B. Tsoumas, S. Dritsas, and D. Gritzalis, “An Ontology-Based Approach
to Information Systems Security Management,” in Proc. of the Third
International Workshop on Mathematical Models, Architectures and
Protocols for Computer Network Security, 2005, pp. 151–164.

[14] G. Tonti, J. M. Bradshaw, R. Jeffers, R. Montanari, N. Suri, and
A. Uszok, “Semantic Web Languages for Policy Representation and
Reasoning: A Comparison of KAoS, Rei, and Ponder,” in Proc. of the
International Semantic Web Conference, 2003, pp. 419–437.

[15] V. Raskin, C. Hempelmann, K. E. Triezenberg, and S. Nirenburg,
“Ontology in information security: a useful theoretical foundation and
methodological tool,” in Proc. of the New Security Paradigms Workshop,
2001, pp. 53–59.

[16] P. Cimiano and S. Handschuh, “Ontology-based linguistic annotation,”
in Proc. of the ACL 2003 workshop on Linguistic annotation, 2003, pp.
14–21.

[17] P. Buitelaar, D. Olejnik, and M. Sintek, “A Protégé Plug-In for Ontology
Extraction from Text Based on Linguistic Analysis,” in Proc. of the First
European Semantic Web Symposium, 2004, pp. 31–44.


