A Logic-Based Approach for Real-Time

Object-Oriented Software Development

Fernando Mwufel do Amaral and Edward Hermann Haeusler
Department of Informatics
PUC-RJ (Catholic University of Rio de Janeiro) — Brazil
{fnaufel, hermanh@inf.puc-rio.br

Abstract

This paper discusses how RETOOL, an action logic featuring an opénaitor
expresses necessary conditions, postconditions and time bounds of ac@iobs, ¢
combined with MTL, a linear-time temporal logic with time-bounded rapars,
to reason about general properties of timed transition systemasbstract model
for the behavior of objects in a real-time, object-oriented safvsystem.

Keywords: Modal Logic in Computing; Action Logic; Timed Transition Systems;
Metric Temporal Logic

1 Introduction

This paper is inserted in the context of an environment for real-time object-oriented
software development based on Formal Methods. The framework depicted here has been
considered for use at a research laboratory at PUC-R.J in the development of the prototype
of a CASE environment for an industrial partner in the field of telecommunications ([9]).

The basic architecture of the environment consists of a set of tools implemented over
an integration platform (currently CORBA).

Conceptually, the environment consists of several planes that relate the tools to various
aspects of functionality. Tt has a user plane, a formal plane and an implementation
plane. In the user plane, software designers model applications and libraries via class
relationships, inter-object communication and state diagrams. The user plane can be used
to produce a so-called scenario (i.e., fixing parameters in the design to specific values),
which is then used by a model checker (SMV — Symbolic Model Verifier [6]) for verifying
properties of the design. The formal plane is also a target for a mapping from designs to
the action logic RETOOL ([1, 4, 7]) in order to support general reasoning about the design,
as opposed to verification and validation tasks. The implementation plane is responsible
for deriving code, through transformation rules, in a high level programming language
(DDL — see [3]) associated with the diagrammatic class notation of the environment.
Finally, executable code is generated from the DDL code, again through transformation
rules.

The focus of this paper is on the support that the formal plane was designed to provide
for object-oriented development. More specifically, the paper concentrates on the way the

logic RETOOL allows reasoning about the enabling conditions, postconditions and time
bounds of the actions involved in the design. The version of RETOOL presented here is
sound and complete, as opposed to the tentative axiomatizations of [4| and [7].

Section 2 discusses the action logic RETOOL and its combination with a linear-time
temporal logic (MTL — see [5]) to abstract temporal properties of actions; section 3
introduces the concrete model of Timed Action Transition Diagrams, used to represent
designs; finally, section 4 provides an example of the use of these formalisms to reason
about a specific design.

2 The Logics

This section presents the action logic RETOOL in detail and discusses how it can be
combined with a temporal logic (MTL) to abstract temporal properties of actions.!
2.1 RETOOL: the Language

The primitive syntactic entities of RETOOL are attribute symbols (which, in this propo-
sitional version of the logic, are simple propositional letters), and action symbols. We
denote the set of attribute symbols as A, and the set of action symbols as T".

The logic presupposes an infinite totally ordered set (TIME, <), with minimum 0.
A constant co is available, such that oo & TIME and ¢ < oo,V € TIME.? The other

syntactic categories are:

e State Propositions (SP): p:=a | -p|p — p/, where a € A;

o Action terms (AT): t :— g | pi6*q, where g € T, p,q € SP, l € TIME, v € TIME
U{o0 }, and I < u;

o Formulae: ¢ i=a |t; Dty | 7| ¢ — ¢ | [t|¢ | | |p, where a € A, t 11,15 € AT,
and p € SP.

2.2 RETOOL: the Semantics

The semantics of RETOOL is defined over structures that are based on the notion of
timed transition systems [10]: given a set A of attribute symbols and a set T of action
symbols; a timed frame F for A and T is a sextuple (W, —, 1, u, I, wy), where

e W is a set of states;
e Foreach g € T, & C W x W is the transition relation for action g;
e [maps each g € T to an element I(g) € TIME;

e u maps each g € ' to an element u(g) € TIME U{co} such that u(g) > I(g);

n order to make the presentation clearer, the propositional versions of the logics are used, but the
reasoning can easily be extended to a first-order context, with typed variables as attributes and arbitrary
assignments as actions.

2For all practical purposes, time can be modelled by the set of natural numbers and the corresponding
< relation

e /: A— 2" is an interpretation of the attributes, where each a € A is assigned the
set of worlds where a is true;

® g is the initial state.

Every action g € T" has a lower bound /(g) and an upper bound u(g). Intuitively, the
lower bound defines the minimum delay that must be observed for the transition to take
place (provided all the necessary conditions for the occurrence of such a transition are
satisfied). The upper bound defines the maximum delay during which the transition must
occur (again, provided all necessary conditions are satisfied). Formally, lower and upper
bounds are defined through the use of the notion of computation:

A timed state sequence [10] for a timed frame is a pair p =< 0, T >, where o is an

infinite sequence of states (o; € W) and T is an infinite sequence of corresponding times
(T; € TIME), satisfying:

e monotonicity: for all ¢ > 0, either T;,; — T}, or T; 1 > T; and 0; 1 — 0;.
e progress: for every t € TIME, there is ¢ > 0 such that T; > ¢.
A computation [10] over a timed frame is a timed state sequence < o,T' > such that

e 0 is a computation of the underlying transition system, i.e., for every ¢ > 0, there

is a transition (i) such that o; o) Oiit;

o (lower bound): for every i > 0 in the domain of o, there is a j < i such that
T; —T; > I(0(¢)) and o(i) is enabled in every state oy, for j < k <.

e (upper bound): for every g € I' and i > 0, there is j > ¢ with T; — T; < u(g) such
that either ¢ is not enabled at o; or g = o (j).

The denotation of a state proposition p in a timed frame JF is the set of states defined
as follows:

o [a] — T(a);
o [-p]” W\ [p);
o [p—p]” — (W\[pl") U]

The denotation of an action term ¢ in a timed frame F is the set of transitions defined
as follows (where en(g) is the set of states where g is enabled):

o lg]” = {(w,0") [w5 w'};

o [pé'ql” = {(w,w) |Fg €T [(w S w') A en(g) C[p]" A
Vo, o' ((v 5) = (' € [q)7) A (1<1(g) Sulg) < w)l}

Note that the denotation of an action term built with the é operator — p;6"q — is the set
of all transitions labeled by actions whose necessary condition is p, whose postcondition
is ¢, and whose time limits are [and w.

Finally, the satisfaction of a formula by a timed frame F at a state w is defined by:

Fouwl piffwe [p]”;

F,wl= (b D t) iff [t1]7 C [t2]”;

F,w |- —¢ iff not F,w |- ¢;

Fwl ¢— ¢ iff F,wl ¢ implies F,w |- ¢';

F,w = [t)¢ iff F,w' |= ¢ for every w' such that (w,w’) € [t]”;
Fowl []piff F,wo |- p.

“D” is the subsumption operator. To say that action term #; subsumes action term
ty is to say that every action denoted by ¢ is also denoted by t» (but not necessarily the
other way around). Subsumption can be seen as a refinement on actions: the actions
denoted by t; refine those denoted by 5.

2.3 An Axiomatization for RETOOL

The axiom schemes and rules of inference in Figure 2.3 comprise an adequate axiomatiza-
tion of RETOOL. We assume given an adequate calculus for deriving properties involving
members of TIME and the relation <.

In the axiomatization, A represents a set of RETOOL formulae, the derivability rela-
tion I is defined in the usual manner, and enabled(t) is an abbreviation for the formula
—[t] L (which is true in a given state w iff there is at least one transition leaving w labeled
by an action in the denotation of t). The soundness and completeness of this axiomati-
zation is proved in detail in [1].

24 MTL

MTL (see [5]) is a linear-time temporal logic with time-bounded operators. Its models
are computations of timed transition systems. We extend the language of MTL with the
action terms of RETOOL taken as propositions (with the intended meaning that an action
term t is true at a given point o; of a computation iff the denotation of ¢ contains the
action responsible for the transition from o; to 0;11). We also add subsumption formulae
of the form t; D t; to MTL, yielding the following language over a set A of attribute
symbols, a set I" of action symbols, and order (TTME, <) as defined for RETOOL:

Tu—alt|tuDdty| 7| 7—=7 | Xge7T | U T2

where a € A, and t,ty,t, € AT, ¢ € TIME U{co}, and R is a relation on TIME U{oc}.
The semantics of this language is defined over a computation < o, T > as follows:

o, T; |- aiff o; € I(a);

o, T; Ftiff o(i) = t;

o3, Ti |- 11 D to iff 1] C [t2];

o, T; |- =7 iff not 0, T; |- T;

(PC) All axioms and rules of propositional calculus

(K) (¢ —) — ([tlp — [t]y)
[Jp—q¢) —(lp—1l2)

(I) [lp— [t[]p
][Ip — (enabled(t) — []p)
[|=p < —[lp

™) AF¢ AFp

ATl AE[lp

AFenabled(t) = p AFtlg AFI<I{) <u(t)<u

(%) At D pbug
(S1) tot

(S2) (t1 Dta) — ((ta D t3) — (t1 D t3))
(S3) (tr D ta) — ([to]d — [t1]9)

(NC) (t D pidq) — (enabled(t) — p)
(Post) (t > pid*q) — ([t]g)

(Bounds) (¢ D p6“q) — (enabled(t) — 1 < I(t) < u(t) < u)
(Global-D) (t; D ta) « [t](t; D o)

(6-Bounds) I(pi6"q) =1 u(pé™q) =u

Figure 1. An axiomatization for RETOOL

e 0,1, 7— 7 iff 0;,T; |- 7 implies 0y, T; |- 7';
o 0,,1; F Xg. Tiff 05, 1;41 =7 and (1i11 —1;) R ¢

o 0, T; | mUpg, 1y iff, for some k > i, it is the case that o4, T} |- 7o and (T, —T;) R c,
and, for every j such that i < j < k, it is the case that 0;,7T; |= 7.

The temporal operators are neXt, referring to the next state in the computation,
and Until, which states the existence of a future state in which 75 holds and until which
71 holds. Notice that these operators are relativized to the intervals determined by the
condition Re. Other operators can be defined through abbreviations, such as

o Fr. 7= TUg. 7 (sometime in the future);

o Gg. 7= (Fg. (—7)) (always in the future).

An axiomatization of MTL can be found in [5]. The proof rules that relate RETOOL
and MTL are as follows:
(R1)
enabled(t) — r t D ppé>q
t — rAX_oq

Rule (R1) deals only with change, i.e. with the transitions performed by actions.
Therefore, it uses the delta operator with time bounds 0 and oco. It states that ¢, when
taken, establishes ¢q. Notice that the post-condition is established in the next state, and
that the transition does not take time.

(R2)

{hDTeb®(—q) |heT —g} g2 Te6¥q
Xo0g — g

Rule (R2) allows us to infer that an action occurs by observing that a given proposition
was set to true when only that action can establish it as a post-condition. In a way, this
rule “completes” R1.

(R3)

p — —enabled(t) D T,6°T
p— Gept

Rule (R3) establishes safety properties by using the lower bound. If p holds and
implies that t is not enabled, then we know that at least x units of time have to elapse
before ¢ can be taken, where z is a lower bound for . The temporal operator G<, means
“for the next = time units”.

(R4)

{p—[hlp|heT —g} p—enabled(g) gD Teb¥T

p — ngg

Rule (R4) establishes liveness properties through the use of the upper bound. If p
holds and is an invariant for all actions other than ¢, and p implies that ¢ is enabled, then
we know that ¢ will be taken before y units of time, where y is an upper bound for g.

cg
[

Figure 2: An edgein a TATD

(R5)
{F'—g} {I'—h}

—gV —h ¢ ¢
¢

Rule (R5) asserts that if the same conclusion ¢ is obtained assuming that a certain
action g does not happen as well as assuming that a certain other action A does not happen,
and, if those actions never happen together, then we obtain the mentioned conclusion.
This is the rule that allows deriving conclusions from non-interfering actions.

3 The Concrete Model

In order to allow the software designer to represent a real-time object-oriented system in
a manner suitable for formal reasoning, Timed Action Transition Diagrams (TATDs) are
introduced as concrete models. This section defines such entities and presents a mapping

from TATDs to RETOOL theories.

3.1 Timed Action Transition Diagrams

Given a set A of attribute symbols and a set I" of action symbols, a Timed Action Tran-
sition Diagram (TATD) is a finite directed graph. Each edge in the graph is labelled by a
guarded instruction ¢ — g, where g € I" and ¢ is a state proposition, and by a pair [l, u],
where [€ TIME and u € TIME U{oco} and I < w.

Each node in the graph represents a location of the flow of control of an object in the
system. An edge between two locations L; and L of object 7 is pictorially represented as
in Figure 2.

3.2 Mapping TATDs onto RETOOL Theories

In order for the formal plane to reason about the behavior of the system, the TATD
corresponding to each object is mapped onto a RETOOL theory. The integration of the
behavior of several objects is achieved by means of colimits in the appropriate category
of RETOOL specifications (Crproor), following a well-known approach illustrated by [2]
and [8]. For lack of space, we do not provide here further details about the categorial
framework for this integration (which takes into account the possibility of various objects
of the same class to be active at the same time).

Oamn®
(=)
(=)

Figure 3: Edges labelled by g in a TATD

Given a TATD over the set A; of attribute symbols and the set T" of action symbols,
we produce a set of RETOOL formulae over the following attribute symbols:

A = Ad U {CLtLo, CLtLl, veey ath,l}

where L;,0 < i < n are the n locations in the TATD.
The RETOOL theory for a given TATD consists of the following formulae:

atL; — (/\ —atLy)
i#j

(At each state, the flow of control is at most in one location.)

IO A —atL) A©)

0<i<n

(The initial state is the one satisfying a set © of initial conditions. In the initial state,
the flow of control is not yet in any location L;.)

For each action symbol ¢ labelling edges in the TATD such as the ones in Figure 3,
the folowing formulae are produced:

g D ((CLtLZl N Cl) V (atLiQ N 02) V..V (CLtle N Ck))
6’LL
!
(atle V atLjQ V..V CLtij)
enabled(g) — ((atLy N ey) V (atLy, Nea) V...V (atL;, Acy))

atLil A cT — [g]atle
atLl-Q A Co — [g]atLJQ

Finally, the functionality of the actions must be provided through formulae of the form:

4 A Short Example

Consider a machine that can sell cakes and cigars. After it accepts a coin, it is ready
to deliver either a cake or a cigar within 10 time units. After the machine delivers the
product, it is reset in at most 1 time unit.

The following set of propositional variables will be used for representing the state:

OFF, ON, Waiting, DeliveredCake, DeliveredCigar
The following actions represent the possible activities of the machine:
begin, coin, reset, cake, cigar

The behavior of the machine is specified as follows:

[

. begin D OFF 16 ON
2. coin D ON 16> Wailing
3. cake D Waiting 16'° DeliveredCake
4. cigar D Waiting 16'° DeliveredCigar
5. reset D DeliveredCigar ;6° ON
6. reset D DeliveredCake ¢6° ON
7. OFF < enabled(begin)
8. ON < enabled(coin)
9. Waiting < enabled(cake)
10. Waiting < enabled(cigar)
11. (DeliveredCigar V DeliveredCake) < enabled(reset)

We omit the axioms that specify that only one propositional variable is true at a time.
The proof rules defined in section 2.4 allow us to derive the following properties:

ON — —F <5 (cake) N =F <5 (cigar) (1)

Waiting — F<yo (cake V cigar) (2)

In order to prove (1), we observe that
ON — —Waiting and —Waiting — (—enabled(cake) A —enabled(cigar))

Thus, from
cake D T16T and cigar D T16>T

we derive

ON — G« —cake and ON — G —cigar

respectively, using R3 in both cases. By MTL reasoning, we derive ON — G<g —cake
and ON — Gcg —cigar. Recall that G<y =p — =F <5 p, by definition.

Let T" be the set of all actions present in the specification. In order to prove (2), first
we observe that

Vg € ((T' = {cake}) — {cigar}) : Waiting — [g|W aiting (3)
Waiting — enabled(cigar) (4)
cigar D T16°T (5)

Thus, by applying rule R4 to (3), (4), and (5), we can conclude
Waiting — F <y cigar

and hence
Waiting — F<ig (cigar V cake)

Similarly we have

Vg € (T" = {cigar}) — {cake}) : Waiting — |g|W aiting (6)
Waiting — enabled(cake) (7)
cake D T16'°T (8)

Thus, by applying rule R4 to (6), (7), and (8), we can conclude
Waiting — F <y cake

and hence
Waiting — F<1g (cigar V cake)

Thus, by using R5 and —cake V —cigar, we reach the desired conclusion.

5 Concluding Remarks

The approach adopted for modeling real-time aspects (timed transition systems for the
object’s lifecycle specification) relies on an extension of Timed Transition Systems and
Timed Action Transition Diagrams as presented in [10]. The extension consists in working
with a specificational level based on the use of action modalities and the § operator. The
use of action names allows us to separate methods from their functionality and, therefore,
model their reactive and real-time aspects. Action modalities are then used for specifying
their functionality (pre/postconditions). The § operator refers to the necessary conditions
and time bounds of actions. The Metric Temporal Logic (MTL) of [5] was extended with
action terms as propositions and related to their specification by several inference rules.

Space limitations have prevented us from illustrating the proposed approach and ex-
plaining how integration of different objects in a system is supported. The framework for
integration is based on the categorial approach presented in [2] and [8].

Work in progress includes the search for an automatic theorem-proving strategy for the

RETOOL/MTL combination and the application of this framework to different fields, e.g.

the design of hypermedia documents, in which real-time constraints also occur naturally.
References
[1] Amaral, F.N., “RETOOL: Uma Légica de Agoes para Sistemas de Transicao Tem-

2]

[10]

porizados”, M.Sc. Dissertation, Dept. of Informatics, PUC-RJ, Brazil, 2000.

Bicarregui, J., Lano, K. and Maibaum, T., “lTowards a Compositional Interpretation
of Object Diagrams”, in Proc IFIP Working Conference on Algorithmic Languages
and Calculi, Chapman and Hall, 1997,

Carvalho, S., “The DDL Programming Language”, Technical Report, Dept. of Infor-
matics, PUC-RJ, Brazil, 1996.

Carvalho, S., Fiadeiro, J. e Haeusler, E.H., “A Formal Approach to Real-Time
Object-Oriented Software”, in Proc. 22nd IFAC/IFIP Workshop on Real-Time Pro-
gramming WRTP’97, Elsevier 1997.

Chang, E., Compositional Verification of Reactive and Real-Time Systems, PhD The-
sis, Stanford University, 1995.

Clarke, E.M., McMillan, K.L., Campos, S., Hartonas-Garmhausen, “Symbolic
Model-Checking”, in CAV 96, LNCS 1102, 1996.

Fiadeiro, J. and Haeusler, E.H., “Bringing It About On Time (Extended Abstract)”,
in Proc. I IMLLAI, Fortaleza, CE, Brazil, 1998.

Fiadeiro, J. and Maibaum, T., “Temporal Theories as Modularization Units for Con-
current Systems Specification”, in Formal Aspects of Computing 4(3), 1992.

Haeusler, E.H., Haeberer, A., Maibaum, T., Fiadeiro, J.L., “ARTS: A Formally Sup-
ported Environment for Object Oriented Software Development”, in Proc. Workshop
on Automating the Process of Software Development, ECOOP 98, 1998.

Henzinger, T., Manna, Z., e Pnuelli, A., “Timed Transition Systems”, in Real Time:
Theory in Practice (JJW. de Bakker, C. Huizing, W.P. de Roever e G. Hozenberg
(eds.)), LNCS 600, Springer-Verlag, 1992.

