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-rio.brAbstra
tThis paper de�nes an a
tion logi
 featuring an operator that denotes ne
essary 
onditions andpost
onditions of a
tions in a timed 
omputational transition system. Three di�erent semanti
s ofthe operator are dis
ussed, and weak 
ompleteness is proved for one of them. It is also brie
y shownhow the a
tion logi
 
an be 
ombined with a temporal logi
 to derive temporal properties of a
tionsfrom the logi
al des
ription of a real-time 
omputational system.Keywords: Modal Logi
 in Computing; A
tion Logi
; Timed Transition Systems; Metri
 TemporalLogi
1 Introdu
tionIn [10℄, Segerberg introdu
ed the notion of a \bringing-it-about" Æ operator, whi
h,when applied to a given proposition q, denotes the set of a
tions that bring aboutthe truth of q. In this paper, we dis
uss the use of a similar operator in a logi
alframework having 
omputational transition systems as its semanti
s.Segerberg's Æ operator has led to an extension of dynami
 logi
 
ontaining elementsfrom logi
s of a
tion, where Æq denotes a
tions that lead to states where q holds.In [3, 6℄, the operator was modi�ed in two di�erent ways: the �rst extension wasintrodu
ed to reason about pre
onditions as well as post
onditions, with the dyadi
form pÆq. The se
ond extension, 
on
erned with real-time appli
ations, added aminimal and a maximal delay for the o

urren
e of ea
h a
tion: here, the a
tion termplÆuq denotes the a
tions that a
hieve q in less than u units of time, provided theywere enabled in states satisfying p for at least l units of time.In [3, 6℄, this last extension was dubbed RETOOL (Real-Time Obje
t-OrientedLogi
, in referen
e to the ultimate goal of a
hieving a formalization of real-time obje
t-oriented software). The exa
t denotation of an a
tion term pÆq, however, has notbeen agreed upon. Two di�erent semanti
s have been proposed for RETOOL, andthis paper presents yet a third one:� [3℄ de�ned pÆq to mean all a
tions that a
hieve q starting from states where pholds, with the further requirement that these a
tions be enabled in every statewhere p holds; we 
all this the Enabling Condition Semanti
s (ECS) of the Æ1L. J. of the IGPL, Vol. 0 No. 0, pp. 1{9 0000 
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2 Completeness of an A
tion Logi
 Featuring a Æ-Operator for Timed Transition Systemsoperator.� In [6℄, pÆq was de�ned as denoting all a
tions a su
h that, if a starts from a statewhere p holds, then it a
hieves q; we 
all this the Material Impli
ation Semanti
s(MIS) of the Æ operator.� In this paper, we present a de�nition of pÆq where this term means the set ofa
tions a
hieving q from states where p holds; this is the Ne
essary ConditionSemanti
s (NCS) of the Æ operator.The most promising semanti
 approa
hes regarding RETOOL as a logi
al languagefor des
ribing 
omputational transition systems seem to be the ECS and the NCS.In this paper we brie
y dis
uss the reasons why the MIS may not be so suitable formodeling 
omputational transition systems. We de�ne a version of RETOOL 
orre-sponding to the NCS approa
h with a sound and (weakly) 
omplete proof theory. Thisversion of RETOOL may be useful as a logi
al language in a 
ategorial framework fordes
ribing 
on
urrent (possibly open) systems.1 We 
on
lude by brie
y dis
ussing theuse of RETOOL 
ombined with a temporal logi
 (parti
ularly MTL [4℄) for validatinglogi
-based system des
riptions.2 De�ning RETOOL2.1 The LanguageThe primitive synta
ti
 entities of RETOOL are attribute symbols (whi
h, in thispropositional version of the logi
, are simple propositional letters), and a
tion symbols.We denote the set of attribute symbols as A, and the set of a
tion symbols as �.The logi
 presupposes an in�nite totally ordered set (TIME, �), with minimum0. A 
onstant 1 is available, su
h that 1 62 TIME and t � 1;8t 2 TIME. Alsoavailable are 
ountably many 
onstants, one for ea
h member of TIME. An adequatetheory of (TIME [f1g, �) is assumed to be 
ontained in the logi
; however, to makethe presentation 
learer, the axioms of this theory are not made expli
it here. Theother synta
ti
 
ategories are:� State Propositions (SP ): p ::= a j :p j p! p0, where a 2 A;� A
tion terms (AT ): t ::= g j plÆuq, where g 2 �, p; q 2 SP , l 2 TIME, u 2 TIME[f1 g, and l � u;� Formulae: � ::= a j t1 � t2 j :� j � ! �0 j [t℄� j [ ℄p, where a 2 A, t; t1; t2 2 AT ,and p 2 SP .There are also two unary fun
tion symbols, l and u, whi
h 
an be applied to a
tionterms to yield their time bounds (i.e., elements of TIME [f1g { see below). The timebounds l(g) and u(g) of a primitive a
tion symbol g are of an extra-logi
al nature;the time bounds l(pxÆyq) and u(pxÆyq) of an a
tion term built with the Æ operatorare, respe
tively, the 
onstants x and y, and 
an be 
onsidered abbreviations thereof.1We do not dis
uss this framework here. The reader is referred to [2, 5℄.
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 Featuring a Æ-Operator for Timed Transition Systems 32.2 Semanti
sThe semanti
s of RETOOL is de�ned over stru
tures that are based on the notion oftimed transition systems [8℄: given a set A of attribute symbols and a set � of a
tionsymbols, a timed frame F for A and � is a sextuple (W;!; l; u; I; w0), where� W is a set of states;� For ea
h g 2 �, g! �W �W is the transition relation for a
tion g;� l maps ea
h g 2 � to an element l(g) 2 TIME;� u maps ea
h g 2 � to an element u(g) 2 TIME [f1g su
h that u(g) � l(g);� I : A ! 2W is an interpretation of the attributes, where ea
h a 2 A is assignedthe set of worlds where a is true;� w0 is the initial state.Every a
tion g 2 � has a lower bound l(g) and an upper bound u(g). Intuitively, thelower bound de�nes the minimum delay that must be observed for the transition totake pla
e (provided all the ne
essary 
onditions for the o

urren
e of su
h a transitionare satis�ed). The upper bound de�nes the maximum delay during whi
h the tran-sition must o

ur (again, provided all ne
essary 
onditions are satis�ed). Formally,lower and upper bounds are de�ned through the use of the notion of 
omputation:A timed state sequen
e [8℄ for a timed frame is a pair � =< �;T >, where � is anin�nite sequen
e of states (�i 2 W ) and T is an in�nite sequen
e of 
orrespondingtimes (Ti 2 TIME), satisfying:� monotoni
ity: for all i � 0, either Ti+1 = Ti, or (Ti+1 > Ti and �i+1 = �i).� progress: for every t 2 TIME, there is i � 0 su
h that Ti � t.A 
omputation [8℄ over a timed frame is a timed state sequen
e < �;T > su
h that� � is a 
omputation of the underlying transition system, i.e., for every i � 0, thereis a transition �(i) su
h that �i �(i)! �i+1;� (lower bound): for every i � 0 in the domain of �, there is a j � i su
h thatTi �Tj > l(�(i)) and �(i) is enabled in every state �k for j � k � i.� (upper bound): for every g 2 � and i � 0, there is j � i with Tj �Ti � u(g) su
hthat either g is not enabled at �j or g = �(j).The denotation of a state proposition p in a timed frame F is the set of statesde�ned as follows:� [[a℄℄ = I(a);� [[:p℄℄F =W n [[p℄℄F ;� [[p! p0℄℄F = (W n [[p℄℄F) [ [[p0℄℄F .The denotation of an a
tion term t in a timed frame F is the set of transitionsde�ned as follows (where en(g) is the set of states where g is enabled):� [[g℄℄F = f(w;w0) j w g! w0g;� [[plÆuq℄℄F = f(w;w0) j 9g 2 � [(w g! w0) ^ en(g) � [[p℄℄F ^8v; v0((v g! v0)) (w0 2 [[q℄℄F )) ^ (l � l(g) � u(g) � u)℄g



4 Completeness of an A
tion Logi
 Featuring a Æ-Operator for Timed Transition SystemsFinally, the satisfa
tion of a formula by a timed frame F at a state w is de�ned by:� F ; w j= p i� w 2 [[p℄℄F ;� F ; w j= (t1 � t2) i� [[t1℄℄F � [[t2℄℄F ;� F ; w j= :� i� not F ; w j= �;� F ; w j= �! �0 i� F ; w j= � implies F ; w j= �0;� F ; w j= [t℄� i� F ; w0 j= � for every w0 su
h that (w;w0) 2 [[t℄℄F ;� F ; w j= [ ℄p i� F ; w0 j= p.2.3 AxiomatizationThe axiom s
hemes and rules of inferen
e below 
omprise an adequate axiomatizationof RETOOL. In what follows, � represents a set of RETOOL formulae, the derivabilityrelation ` is de�ned in the usual manner, and enabled(t) is an abbreviation for theformula :[t℄? (see 
omments in the next se
tion). For la
k of spa
e, we do not provethe soundness of this axiomatization, but it should be easy to see that the axioms andrules below are indeed sound for the Ne
essary Condition Semanti
s of RETOOL.2.4 Comments� \�" is the subsumption operator. To say that a
tion term t1 subsumes a
tionterm t2 is to say that every a
tion denoted by t1 is also denoted by t2 (but notne
essarily the other way around). Subsumption 
an be seen as a re�nement ona
tions: the a
tions denoted by t1 re�ne those denoted by t2.�We de�ne, for an a
tion term t, the set en(t) = fw 2W j 9w0 su
h that (w;w0) 2[[t℄℄g. This is the set of all states where at least one of the a
tions in the denotationof t is enabled. Note that saying that a world w is a member of en(t) is equivalentto saying that the formula :[t℄? is true in w. In fa
t, we de�ne the abbreviationenabled(t) to mean :[t℄?.The present work departs from the semanti
s of the Æ operator given in [6℄. There,[[plÆuq℄℄ is de�ned as the set of all transitions (w;w0) su
h that w 2 [[p℄℄ implies w0 2 [[q℄℄.This semanti
s mirrors the meaning of the Hoare triples fpggfqg (see [9℄), namelythat all terminating runs of program g starting in states satisfying p will end in statessatisfying q (and there is no guarantee about runs that start in states not satisfyingp). A

ording to this view, p 
ould be 
onsidered a pre
ondition of program g, withq a relative post
ondition.Now, the semanti
s presented here requires that for (w;w0) to be denoted by plÆuq,it must be the 
ase that w g! w0 for some g su
h that en(g) � [[p℄℄. The requirementthat p must be true in all worlds where g is enabled for
es us to see p as a ne
essary
ondition of the program represented by g. It is simply impossible to have runs of gstarting in states not satisfying p.This \ne
essary-
ondition" semanti
s (NCS) of the Æ operator seems to us moreappropriate to reason about timed transition systems as abstra
t models of 
omplexreal-time rea
tive systems. The \fun
tionality" of an a
tion, in the sense 
apturedby Hoare triples, 
an still be expressed using a
tion modalities. I.e., the Hoare triplefpggfqg is 
losely related to the RETOOL formula p! [g℄q.
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 Featuring a Æ-Operator for Timed Transition Systems 5(PC) All axioms and rules of propositional 
al
ulus(K) [t℄(�!  )! ([t℄�! [t℄ )[ ℄(p! q)! ([ ℄p! [ ℄q)(I) [ ℄p! [t℄[ ℄p[t℄[ ℄p! (enabled(t)! [ ℄p)[ ℄:p$ :[ ℄p(N) � ` �� ` [t℄� � ` p� ` [ ℄p(Æ) � ` enabled(t)! p � ` [t℄q � ` l � l(t) � u(t) � u� ` t � plÆuq(S1) t � t(S2) (t1 � t2)! ((t2 � t3)! (t1 � t3))(S3) (t1 � t2)! ([t2℄�! [t1℄�)(NC) (t � plÆuq)! (enabled(t)! p)(Post) (t � plÆuq)! ([t℄q)(Bounds) (t � plÆuq)! (enabled(t)! l � l(t) � u(t) � u)(Global-�) (t1 � t2)$ [t℄(t1 � t2)(Æ-Bounds) l(plÆuq) = l u(plÆuq) = uFig. 1. An Axiomatization of RETOOL3 Weak CompletenessIn order to show that the axiomatization is 
omplete, we build a 
anoni
 model, whoseworlds are maximally 
onsistent sets of RETOOL formulae (see [7℄ for de�nitions andproperties of maximally 
onsistent sets), and whose transitions are determined fromthe 
ontents of the worlds in the fashion des
ribed below. Sin
e every 
onsistentformula is a member of some maximally 
onsistent set, and sin
e satisfa
tion of aformula � in a world w of the 
anoni
 model is equivalent to � being a member of w(proven in the Coin
iden
e Lemma), this ensures that every 
onsistent formula willbe satis�ed in the 
anoni
 model.



6 Completeness of an A
tion Logi
 Featuring a Æ-Operator for Timed Transition Systems3.1 Constru
tion of the Canoni
 ModelThe set A
 of attribute symbols of the 
anoni
 model is arbitrary: A
 = fa1; a2; :::g.For the 
onstru
tion of the set �
 of a
tion symbols, we introdu
e the followingde�nitions:Definition 3.1For ea
h p 2 SP ,2 ~p = fr j ` p$ rgDefinition 3.2�
 = f\~plÆu~q" j p; q 2 SP n ~?; l 2 TIME; u 2 TIME [ f1ggWe de�ne here an a
tion symbol for ea
h quadruple (p; q; l; u) 
omposed of satis-�able state propositions p and q (up to tautologi
al equivalen
e) and time bounds land u. In order to ensure that these a
tion symbols have the desired meaning, wede�ne the following set � of RETOOL formulae:Definition 3.3� = f(\~plÆu~q" � plÆuq) ^ (plÆuq � \~plÆu~q") j p; q 2 SP n ~?; l 2 TIME ; u 2TIME [ f1ggNote that in every model of �, ea
h a
tion symbol \~plÆu~q" will fun
tion as a\witness" to a
tion term plÆuq, the denotation of the symbol 
orresponding exa
tlyto the denotation of the term.More extra-logi
al information is ne
essary to build the 
anoni
 model: we mustspe
ify the initial state through a set � of formulae. If we want state propositionsp1; p2; ::: to be true at the initial state w0, we de�ne � = f[ ℄p1; [ ℄p2; :::g.3 Obviously,the set fp1; p2; :::g must be 
onsistent.We also introdu
e some spe
ial notation to refer to \demodalized" formulae, wherew is a set of formulae and t is any a
tion term:Definition 3.4w n [t℄ = f� j [t℄� 2 wgDefinition 3.5 (The 
anoni
 model)Given the sets A
, �, � and �
, we de�ne the 
anoni
 model as M 
 = (W 
; f g!j g 2�
g; l
; u
; I
; w
0), whereW 
 = f� j � is a maximally 
onsistent set 
ontaining � [�g.\~plÆu ~q"! = f(w;w0) 2 W 
 �W 
 j w n [\~plÆu~q"℄ � w0gl
 is su
h that l
(\~plÆu~q") = l for every \~plÆu~q" 2 �
.u
 is su
h that u
(\~plÆu~q") = u for every \~plÆu~q" 2 �
.I
 is su
h that I
(p) = fw 2 W 
 j p 2 wg for every p 2 SP .w
0 is some world in W 
 satisfying � n [ ℄.Central to the 
ompleteness proof is the Coin
iden
e Lemma:8w 2 W 
; 8� : � 2 w , M 
; w j= �2We refer to the set of state propositions as SP, and to the set of a
tion terms as AT.3A
tually, this leads to a 
lass of 
anoni
 models, one model for ea
h 
hoi
e of �.
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tion Logi
 Featuring a Æ-Operator for Timed Transition Systems 7This is proved by indu
tion over the formation of �. We sket
h the proof of only one
ase here, using the following lemmas:4Lemma 3.6For all w 2 W 
, for all p; q 2 SP n ~?, for all l 2 TIME ; u 2 TIME [ f1g, for allt 2 AT , and for all formulae �:w ` t � plÆuq , w ` t � \~plÆu~q"w ` plÆuq � t , w ` \~plÆu~q" � tw ` [plÆuq℄� , w ` [\~plÆu~q"℄�Lemma 3.7For all w 2W 
, for all p; q 2 SP n ~?, for all l 2 TIME ; u 2 TIME [ f1g:w 2 en(plÆuq) , w ` enabled(plÆuq)By lemma 3.6, the equivalen
e also holds for the formula enabled(\~plÆu~q").Lemma 3.8In the 
anoni
 model, [[\~plÆu~q"℄℄ = [[plÆuq℄℄.The subsumption 
ase of the Coin
iden
e Lemma: � = t1 � t2By lemmas 3.6 and 3.8, we may restri
t ourselves to the 
ase where t1 = plÆuq andt2 = rmÆns:()) Suppose plÆuq � rmÆns 2 w. Let (w;w0) 2 [[plÆuq℄℄. ThenplÆuq � rmÆns 2 w ) (by axiom (S3))8� [rmÆns℄�! [plÆuq℄� 2 w ) (as w is maximally 
onsistent)8� [rmÆns℄� 2 w ) [plÆuq℄� 2 w ) (as w n [plÆuq℄ � w0)w n [rmÆns℄ � w0 ) (by the de�nition of M 
)(w;w0) 2 [[rmÆns℄℄(() Suppose w j= plÆuq � rmÆns. Then, for every w 2 W 
,[[plÆuq℄℄ � [[rmÆns℄℄ )w j= enabled(plÆuq) ) w j= r , (by lemma 3.7 and the de�nition of I
)w ` enabled(plÆuq) ) w ` r , (as w is maximally 
onsistent)w ` enabled(plÆuq)! r , (as w is arbitrary 
ontaining � [�)� [� ` enabled(plÆuq)! rAs for the post
ondition, we have that, for all w 2M 
,[[plÆuq℄℄ � [[rmÆns℄℄ )w j= [plÆuq℄s ) (by lemma 3.8)w ` [plÆuq℄s , (as w is arbitrary 
ontaining � [�)� [� ` [plÆuq℄sAs for the time bounds, we have that m � l � u � n. There are derived rules thatstate that ne
essary 
onditions, post
onditions and time bounds 
an be weakened.Therefore, � [ � ` plÆuq � rmÆns, and we 
on
lude that, as any w 2 M 
 
ontains� [�, it is the 
ase that w ` plÆuq � rmÆns.4Detailed proofs of these and all other relevant lemmas 
an be found in [1℄.



8 Completeness of an A
tion Logi
 Featuring a Æ-Operator for Timed Transition Systems4 Abstra
ting Temporal Properties of SystemsSin
e the semanti
s of the time-bounded Æ operator is given in terms of 
omputations,it is only natural that we investigate the 
ombination of RETOOL with a linear-timetemporal logi
, whose models are also 
omputations. In these 
on
luding remarks,we brie
y des
ribe the nature of this 
ombination, whi
h has been studied for theMIS semanti
s of RETOOL in [6℄ and 
an be easily adapted to the NCS semanti
spresented in this paper.The temporal logi
 
hosen was MTL (see [4℄), whi
h features time-bounded tem-poral operators XR
 (next state) and UR
 (until), where 
 2 TIME [f1g and Ris a relation on TIME. We extend this language by adding RETOOL's a
tion termsas primitive propositions and stipulate that an a
tion term t is true at step i of a
omputation i� the denotation of t 
ontains the a
tion responsible for the transitiontaken at step i.The following are examples (taken from [6℄ and modi�ed to �t our NCS semanti
s)of proof rules relating RETOOL and MTL:enabled(t)! r t � p0Æ1qt! r ^X=0qThis rule states that an a
tion denoted by t (with p as a ne
essary 
ondition and qas a post
ondition) establishes q in the next state whenever this a
tion is responsiblefor the transition to the next state. In 
omplian
e with the de�nition of 
omputation,the transition does not take any time.p! :enabled(t) t � >xÆ1>p! G�x:tThis rule 
aptures a safety property 
on
erning the lower bound of an a
tion: ifthe truth of p means that a
tion t is disabled, and t has lower bound x, we 
on
ludethat, p holding in the 
urrent state, t will not be taken for at least x time units (theG�x bounded temporal operator meaning \during the next x time units").Additional rules and an example of a detailed system des
ription 
an be found in [6℄for the MIS semanti
s. They 
an be easily adapted to the NCS semanti
s we employhere.5 Con
luding RemarksIn this paper, we have shown how Segerberg's Æ operator 
an be extended to de�neRETOOL, an a
tion logi
 meant to reason about 
omputational timed transitionsystems. Three alternative semanti
s have been 
onsidered for a
tion terms builtwith this operator, and a weak 
ompleteness proof has been sket
hed for one of thesesemanti
s (the NCS).It was also indi
ated how the 
ombination of RETOOL with a temporal logi
 
anbe useful in deriving properties of a
tions from system des
riptions.Work in progress in
ludes the study of the ECS as an alternative semanti
s, withsoundness and 
ompleteness proofs, and the 
omparison of the ECS and NCS ap-proa
hes in the spe
i�
ation of real-time 
omputational systems.
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