
Completeness of an Ation LogiFeaturing a Æ-Operator for TimedTransition SystemsFERNANDO N�AUFEL DO AMARAL,EDWARD HERMANN HAEUSLER,Department of Informatis,PUC-RJ (Catholi University of Rio de Janeiro), Brazilffnaufel, hermanng�inf.pu-rio.brAbstratThis paper de�nes an ation logi featuring an operator that denotes neessary onditions andpostonditions of ations in a timed omputational transition system. Three di�erent semantis ofthe operator are disussed, and weak ompleteness is proved for one of them. It is also briey shownhow the ation logi an be ombined with a temporal logi to derive temporal properties of ationsfrom the logial desription of a real-time omputational system.Keywords: Modal Logi in Computing; Ation Logi; Timed Transition Systems; Metri TemporalLogi1 IntrodutionIn [10℄, Segerberg introdued the notion of a \bringing-it-about" Æ operator, whih,when applied to a given proposition q, denotes the set of ations that bring aboutthe truth of q. In this paper, we disuss the use of a similar operator in a logialframework having omputational transition systems as its semantis.Segerberg's Æ operator has led to an extension of dynami logi ontaining elementsfrom logis of ation, where Æq denotes ations that lead to states where q holds.In [3, 6℄, the operator was modi�ed in two di�erent ways: the �rst extension wasintrodued to reason about preonditions as well as postonditions, with the dyadiform pÆq. The seond extension, onerned with real-time appliations, added aminimal and a maximal delay for the ourrene of eah ation: here, the ation termplÆuq denotes the ations that ahieve q in less than u units of time, provided theywere enabled in states satisfying p for at least l units of time.In [3, 6℄, this last extension was dubbed RETOOL (Real-Time Objet-OrientedLogi, in referene to the ultimate goal of ahieving a formalization of real-time objet-oriented software). The exat denotation of an ation term pÆq, however, has notbeen agreed upon. Two di�erent semantis have been proposed for RETOOL, andthis paper presents yet a third one:� [3℄ de�ned pÆq to mean all ations that ahieve q starting from states where pholds, with the further requirement that these ations be enabled in every statewhere p holds; we all this the Enabling Condition Semantis (ECS) of the Æ1L. J. of the IGPL, Vol. 0 No. 0, pp. 1{9 0000  Oxford University Press



2 Completeness of an Ation Logi Featuring a Æ-Operator for Timed Transition Systemsoperator.� In [6℄, pÆq was de�ned as denoting all ations a suh that, if a starts from a statewhere p holds, then it ahieves q; we all this the Material Impliation Semantis(MIS) of the Æ operator.� In this paper, we present a de�nition of pÆq where this term means the set ofations ahieving q from states where p holds; this is the Neessary ConditionSemantis (NCS) of the Æ operator.The most promising semanti approahes regarding RETOOL as a logial languagefor desribing omputational transition systems seem to be the ECS and the NCS.In this paper we briey disuss the reasons why the MIS may not be so suitable formodeling omputational transition systems. We de�ne a version of RETOOL orre-sponding to the NCS approah with a sound and (weakly) omplete proof theory. Thisversion of RETOOL may be useful as a logial language in a ategorial framework fordesribing onurrent (possibly open) systems.1 We onlude by briey disussing theuse of RETOOL ombined with a temporal logi (partiularly MTL [4℄) for validatinglogi-based system desriptions.2 De�ning RETOOL2.1 The LanguageThe primitive syntati entities of RETOOL are attribute symbols (whih, in thispropositional version of the logi, are simple propositional letters), and ation symbols.We denote the set of attribute symbols as A, and the set of ation symbols as �.The logi presupposes an in�nite totally ordered set (TIME, �), with minimum0. A onstant 1 is available, suh that 1 62 TIME and t � 1;8t 2 TIME. Alsoavailable are ountably many onstants, one for eah member of TIME. An adequatetheory of (TIME [f1g, �) is assumed to be ontained in the logi; however, to makethe presentation learer, the axioms of this theory are not made expliit here. Theother syntati ategories are:� State Propositions (SP ): p ::= a j :p j p! p0, where a 2 A;� Ation terms (AT ): t ::= g j plÆuq, where g 2 �, p; q 2 SP , l 2 TIME, u 2 TIME[f1 g, and l � u;� Formulae: � ::= a j t1 � t2 j :� j � ! �0 j [t℄� j [ ℄p, where a 2 A, t; t1; t2 2 AT ,and p 2 SP .There are also two unary funtion symbols, l and u, whih an be applied to ationterms to yield their time bounds (i.e., elements of TIME [f1g { see below). The timebounds l(g) and u(g) of a primitive ation symbol g are of an extra-logial nature;the time bounds l(pxÆyq) and u(pxÆyq) of an ation term built with the Æ operatorare, respetively, the onstants x and y, and an be onsidered abbreviations thereof.1We do not disuss this framework here. The reader is referred to [2, 5℄.



Completeness of an Ation Logi Featuring a Æ-Operator for Timed Transition Systems 32.2 SemantisThe semantis of RETOOL is de�ned over strutures that are based on the notion oftimed transition systems [8℄: given a set A of attribute symbols and a set � of ationsymbols, a timed frame F for A and � is a sextuple (W;!; l; u; I; w0), where� W is a set of states;� For eah g 2 �, g! �W �W is the transition relation for ation g;� l maps eah g 2 � to an element l(g) 2 TIME;� u maps eah g 2 � to an element u(g) 2 TIME [f1g suh that u(g) � l(g);� I : A ! 2W is an interpretation of the attributes, where eah a 2 A is assignedthe set of worlds where a is true;� w0 is the initial state.Every ation g 2 � has a lower bound l(g) and an upper bound u(g). Intuitively, thelower bound de�nes the minimum delay that must be observed for the transition totake plae (provided all the neessary onditions for the ourrene of suh a transitionare satis�ed). The upper bound de�nes the maximum delay during whih the tran-sition must our (again, provided all neessary onditions are satis�ed). Formally,lower and upper bounds are de�ned through the use of the notion of omputation:A timed state sequene [8℄ for a timed frame is a pair � =< �;T >, where � is anin�nite sequene of states (�i 2 W ) and T is an in�nite sequene of orrespondingtimes (Ti 2 TIME), satisfying:� monotoniity: for all i � 0, either Ti+1 = Ti, or (Ti+1 > Ti and �i+1 = �i).� progress: for every t 2 TIME, there is i � 0 suh that Ti � t.A omputation [8℄ over a timed frame is a timed state sequene < �;T > suh that� � is a omputation of the underlying transition system, i.e., for every i � 0, thereis a transition �(i) suh that �i �(i)! �i+1;� (lower bound): for every i � 0 in the domain of �, there is a j � i suh thatTi �Tj > l(�(i)) and �(i) is enabled in every state �k for j � k � i.� (upper bound): for every g 2 � and i � 0, there is j � i with Tj �Ti � u(g) suhthat either g is not enabled at �j or g = �(j).The denotation of a state proposition p in a timed frame F is the set of statesde�ned as follows:� [[a℄℄ = I(a);� [[:p℄℄F =W n [[p℄℄F ;� [[p! p0℄℄F = (W n [[p℄℄F) [ [[p0℄℄F .The denotation of an ation term t in a timed frame F is the set of transitionsde�ned as follows (where en(g) is the set of states where g is enabled):� [[g℄℄F = f(w;w0) j w g! w0g;� [[plÆuq℄℄F = f(w;w0) j 9g 2 � [(w g! w0) ^ en(g) � [[p℄℄F ^8v; v0((v g! v0)) (w0 2 [[q℄℄F )) ^ (l � l(g) � u(g) � u)℄g



4 Completeness of an Ation Logi Featuring a Æ-Operator for Timed Transition SystemsFinally, the satisfation of a formula by a timed frame F at a state w is de�ned by:� F ; w j= p i� w 2 [[p℄℄F ;� F ; w j= (t1 � t2) i� [[t1℄℄F � [[t2℄℄F ;� F ; w j= :� i� not F ; w j= �;� F ; w j= �! �0 i� F ; w j= � implies F ; w j= �0;� F ; w j= [t℄� i� F ; w0 j= � for every w0 suh that (w;w0) 2 [[t℄℄F ;� F ; w j= [ ℄p i� F ; w0 j= p.2.3 AxiomatizationThe axiom shemes and rules of inferene below omprise an adequate axiomatizationof RETOOL. In what follows, � represents a set of RETOOL formulae, the derivabilityrelation ` is de�ned in the usual manner, and enabled(t) is an abbreviation for theformula :[t℄? (see omments in the next setion). For lak of spae, we do not provethe soundness of this axiomatization, but it should be easy to see that the axioms andrules below are indeed sound for the Neessary Condition Semantis of RETOOL.2.4 Comments� \�" is the subsumption operator. To say that ation term t1 subsumes ationterm t2 is to say that every ation denoted by t1 is also denoted by t2 (but notneessarily the other way around). Subsumption an be seen as a re�nement onations: the ations denoted by t1 re�ne those denoted by t2.�We de�ne, for an ation term t, the set en(t) = fw 2W j 9w0 suh that (w;w0) 2[[t℄℄g. This is the set of all states where at least one of the ations in the denotationof t is enabled. Note that saying that a world w is a member of en(t) is equivalentto saying that the formula :[t℄? is true in w. In fat, we de�ne the abbreviationenabled(t) to mean :[t℄?.The present work departs from the semantis of the Æ operator given in [6℄. There,[[plÆuq℄℄ is de�ned as the set of all transitions (w;w0) suh that w 2 [[p℄℄ implies w0 2 [[q℄℄.This semantis mirrors the meaning of the Hoare triples fpggfqg (see [9℄), namelythat all terminating runs of program g starting in states satisfying p will end in statessatisfying q (and there is no guarantee about runs that start in states not satisfyingp). Aording to this view, p ould be onsidered a preondition of program g, withq a relative postondition.Now, the semantis presented here requires that for (w;w0) to be denoted by plÆuq,it must be the ase that w g! w0 for some g suh that en(g) � [[p℄℄. The requirementthat p must be true in all worlds where g is enabled fores us to see p as a neessaryondition of the program represented by g. It is simply impossible to have runs of gstarting in states not satisfying p.This \neessary-ondition" semantis (NCS) of the Æ operator seems to us moreappropriate to reason about timed transition systems as abstrat models of omplexreal-time reative systems. The \funtionality" of an ation, in the sense apturedby Hoare triples, an still be expressed using ation modalities. I.e., the Hoare triplefpggfqg is losely related to the RETOOL formula p! [g℄q.



Completeness of an Ation Logi Featuring a Æ-Operator for Timed Transition Systems 5(PC) All axioms and rules of propositional alulus(K) [t℄(�!  )! ([t℄�! [t℄ )[ ℄(p! q)! ([ ℄p! [ ℄q)(I) [ ℄p! [t℄[ ℄p[t℄[ ℄p! (enabled(t)! [ ℄p)[ ℄:p$ :[ ℄p(N) � ` �� ` [t℄� � ` p� ` [ ℄p(Æ) � ` enabled(t)! p � ` [t℄q � ` l � l(t) � u(t) � u� ` t � plÆuq(S1) t � t(S2) (t1 � t2)! ((t2 � t3)! (t1 � t3))(S3) (t1 � t2)! ([t2℄�! [t1℄�)(NC) (t � plÆuq)! (enabled(t)! p)(Post) (t � plÆuq)! ([t℄q)(Bounds) (t � plÆuq)! (enabled(t)! l � l(t) � u(t) � u)(Global-�) (t1 � t2)$ [t℄(t1 � t2)(Æ-Bounds) l(plÆuq) = l u(plÆuq) = uFig. 1. An Axiomatization of RETOOL3 Weak CompletenessIn order to show that the axiomatization is omplete, we build a anoni model, whoseworlds are maximally onsistent sets of RETOOL formulae (see [7℄ for de�nitions andproperties of maximally onsistent sets), and whose transitions are determined fromthe ontents of the worlds in the fashion desribed below. Sine every onsistentformula is a member of some maximally onsistent set, and sine satisfation of aformula � in a world w of the anoni model is equivalent to � being a member of w(proven in the Coinidene Lemma), this ensures that every onsistent formula willbe satis�ed in the anoni model.



6 Completeness of an Ation Logi Featuring a Æ-Operator for Timed Transition Systems3.1 Constrution of the Canoni ModelThe set A of attribute symbols of the anoni model is arbitrary: A = fa1; a2; :::g.For the onstrution of the set � of ation symbols, we introdue the followingde�nitions:Definition 3.1For eah p 2 SP ,2 ~p = fr j ` p$ rgDefinition 3.2� = f\~plÆu~q" j p; q 2 SP n ~?; l 2 TIME; u 2 TIME [ f1ggWe de�ne here an ation symbol for eah quadruple (p; q; l; u) omposed of satis-�able state propositions p and q (up to tautologial equivalene) and time bounds land u. In order to ensure that these ation symbols have the desired meaning, wede�ne the following set � of RETOOL formulae:Definition 3.3� = f(\~plÆu~q" � plÆuq) ^ (plÆuq � \~plÆu~q") j p; q 2 SP n ~?; l 2 TIME ; u 2TIME [ f1ggNote that in every model of �, eah ation symbol \~plÆu~q" will funtion as a\witness" to ation term plÆuq, the denotation of the symbol orresponding exatlyto the denotation of the term.More extra-logial information is neessary to build the anoni model: we mustspeify the initial state through a set � of formulae. If we want state propositionsp1; p2; ::: to be true at the initial state w0, we de�ne � = f[ ℄p1; [ ℄p2; :::g.3 Obviously,the set fp1; p2; :::g must be onsistent.We also introdue some speial notation to refer to \demodalized" formulae, wherew is a set of formulae and t is any ation term:Definition 3.4w n [t℄ = f� j [t℄� 2 wgDefinition 3.5 (The anoni model)Given the sets A, �, � and �, we de�ne the anoni model as M  = (W ; f g!j g 2�g; l; u; I; w0), whereW  = f� j � is a maximally onsistent set ontaining � [�g.\~plÆu ~q"! = f(w;w0) 2 W  �W  j w n [\~plÆu~q"℄ � w0gl is suh that l(\~plÆu~q") = l for every \~plÆu~q" 2 �.u is suh that u(\~plÆu~q") = u for every \~plÆu~q" 2 �.I is suh that I(p) = fw 2 W  j p 2 wg for every p 2 SP .w0 is some world in W  satisfying � n [ ℄.Central to the ompleteness proof is the Coinidene Lemma:8w 2 W ; 8� : � 2 w , M ; w j= �2We refer to the set of state propositions as SP, and to the set of ation terms as AT.3Atually, this leads to a lass of anoni models, one model for eah hoie of �.



Completeness of an Ation Logi Featuring a Æ-Operator for Timed Transition Systems 7This is proved by indution over the formation of �. We sketh the proof of only onease here, using the following lemmas:4Lemma 3.6For all w 2 W , for all p; q 2 SP n ~?, for all l 2 TIME ; u 2 TIME [ f1g, for allt 2 AT , and for all formulae �:w ` t � plÆuq , w ` t � \~plÆu~q"w ` plÆuq � t , w ` \~plÆu~q" � tw ` [plÆuq℄� , w ` [\~plÆu~q"℄�Lemma 3.7For all w 2W , for all p; q 2 SP n ~?, for all l 2 TIME ; u 2 TIME [ f1g:w 2 en(plÆuq) , w ` enabled(plÆuq)By lemma 3.6, the equivalene also holds for the formula enabled(\~plÆu~q").Lemma 3.8In the anoni model, [[\~plÆu~q"℄℄ = [[plÆuq℄℄.The subsumption ase of the Coinidene Lemma: � = t1 � t2By lemmas 3.6 and 3.8, we may restrit ourselves to the ase where t1 = plÆuq andt2 = rmÆns:()) Suppose plÆuq � rmÆns 2 w. Let (w;w0) 2 [[plÆuq℄℄. ThenplÆuq � rmÆns 2 w ) (by axiom (S3))8� [rmÆns℄�! [plÆuq℄� 2 w ) (as w is maximally onsistent)8� [rmÆns℄� 2 w ) [plÆuq℄� 2 w ) (as w n [plÆuq℄ � w0)w n [rmÆns℄ � w0 ) (by the de�nition of M )(w;w0) 2 [[rmÆns℄℄(() Suppose w j= plÆuq � rmÆns. Then, for every w 2 W ,[[plÆuq℄℄ � [[rmÆns℄℄ )w j= enabled(plÆuq) ) w j= r , (by lemma 3.7 and the de�nition of I)w ` enabled(plÆuq) ) w ` r , (as w is maximally onsistent)w ` enabled(plÆuq)! r , (as w is arbitrary ontaining � [�)� [� ` enabled(plÆuq)! rAs for the postondition, we have that, for all w 2M ,[[plÆuq℄℄ � [[rmÆns℄℄ )w j= [plÆuq℄s ) (by lemma 3.8)w ` [plÆuq℄s , (as w is arbitrary ontaining � [�)� [� ` [plÆuq℄sAs for the time bounds, we have that m � l � u � n. There are derived rules thatstate that neessary onditions, postonditions and time bounds an be weakened.Therefore, � [ � ` plÆuq � rmÆns, and we onlude that, as any w 2 M  ontains� [�, it is the ase that w ` plÆuq � rmÆns.4Detailed proofs of these and all other relevant lemmas an be found in [1℄.



8 Completeness of an Ation Logi Featuring a Æ-Operator for Timed Transition Systems4 Abstrating Temporal Properties of SystemsSine the semantis of the time-bounded Æ operator is given in terms of omputations,it is only natural that we investigate the ombination of RETOOL with a linear-timetemporal logi, whose models are also omputations. In these onluding remarks,we briey desribe the nature of this ombination, whih has been studied for theMIS semantis of RETOOL in [6℄ and an be easily adapted to the NCS semantispresented in this paper.The temporal logi hosen was MTL (see [4℄), whih features time-bounded tem-poral operators XR (next state) and UR (until), where  2 TIME [f1g and Ris a relation on TIME. We extend this language by adding RETOOL's ation termsas primitive propositions and stipulate that an ation term t is true at step i of aomputation i� the denotation of t ontains the ation responsible for the transitiontaken at step i.The following are examples (taken from [6℄ and modi�ed to �t our NCS semantis)of proof rules relating RETOOL and MTL:enabled(t)! r t � p0Æ1qt! r ^X=0qThis rule states that an ation denoted by t (with p as a neessary ondition and qas a postondition) establishes q in the next state whenever this ation is responsiblefor the transition to the next state. In ompliane with the de�nition of omputation,the transition does not take any time.p! :enabled(t) t � >xÆ1>p! G�x:tThis rule aptures a safety property onerning the lower bound of an ation: ifthe truth of p means that ation t is disabled, and t has lower bound x, we onludethat, p holding in the urrent state, t will not be taken for at least x time units (theG�x bounded temporal operator meaning \during the next x time units").Additional rules and an example of a detailed system desription an be found in [6℄for the MIS semantis. They an be easily adapted to the NCS semantis we employhere.5 Conluding RemarksIn this paper, we have shown how Segerberg's Æ operator an be extended to de�neRETOOL, an ation logi meant to reason about omputational timed transitionsystems. Three alternative semantis have been onsidered for ation terms builtwith this operator, and a weak ompleteness proof has been skethed for one of thesesemantis (the NCS).It was also indiated how the ombination of RETOOL with a temporal logi anbe useful in deriving properties of ations from system desriptions.Work in progress inludes the study of the ECS as an alternative semantis, withsoundness and ompleteness proofs, and the omparison of the ECS and NCS ap-proahes in the spei�ation of real-time omputational systems.
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