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Abstract

This paper defines an action logic featuring an operator that denotes necessary conditions and
postconditions of actions in a timed computational transition system. Three different semantics of
the operator are discussed, and weak completeness is proved for one of them. It is also briefly shown
how the action logic can be combined with a temporal logic to derive temporal properties of actions
from the logical description of a real-time computational system.
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1 Introduction

In [10], Segerberg introduced the notion of a “bringing-it-about” § operator, which,
when applied to a given proposition ¢, denotes the set of actions that bring about
the truth of ¢. In this paper, we discuss the use of a similar operator in a logical
framework having computational transition systems as its semantics.

Segerberg’s § operator has led to an extension of dynamic logic containing elements
from logics of action, where dq denotes actions that lead to states where g holds.
In [3, 6], the operator was modified in two different ways: the first extension was
introduced to reason about preconditions as well as postconditions, with the dyadic
form pdq. The second extension, concerned with real-time applications, added a
minimal and a maximal delay for the occurrence of each action: here, the action term
pdtq denotes the actions that achieve ¢ in less than u units of time, provided they
were enabled in states satisfying p for at least [ units of time.

In [3, 6], this last extension was dubbed RETOOL (Real-Time Object-Oriented
Logic, in reference to the ultimate goal of achieving a formalization of real-time object-
oriented software). The exact denotation of an action term pdq, however, has not
been agreed upon. Two different semantics have been proposed for RETOOL, and
this paper presents yet a third one:

e [3] defined pdg to mean all actions that achieve ¢ starting from states where p
holds, with the further requirement that these actions be enabled in every state
where p holds; we call this the Enabling Condition Semantics (ECS) of the §
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operator.

e In [6], pdq was defined as denoting all actions a such that, if a starts from a state
where p holds, then it achieves ¢; we call this the Material Implication Semantics
(MIS) of the ¢ operator.

e In this paper, we present a definition of pdg where this term means the set of
actions achieving ¢ from states where p holds; this is the Necessary Condition
Semantics (NCS) of the ¢ operator.

The most promising semantic approaches regarding RETOOL as a logical language
for describing computational transition systems seem to be the ECS and the NCS.
In this paper we briefly discuss the reasons why the MIS may not be so suitable for
modeling computational transition systems. We define a version of RETOOL corre-
sponding to the NCS approach with a sound and (weakly) complete proof theory. This
version of RETOOL may be useful as a logical language in a categorial framework for
describing concurrent (possibly open) systems.! We conclude by briefly discussing the
use of RETOOL combined with a temporal logic (particularly MTL [4]) for validating
logic-based system descriptions.

2 Defining RETOOL

2.1 The Language

The primitive syntactic entities of RETOOL are attribute symbols (which, in this
propositional version of the logic, are simple propositional letters), and action symbols.
We denote the set of attribute symbols as A, and the set of action symbols as T.

The logic presupposes an infinite totally ordered set (TIME, <), with minimum
0. A constant oo is available, such that co ¢ TIME and t < oo,Vt € TIME. Also
available are countably many constants, one for each member of TIME. An adequate
theory of (TIME U{oo}, <) is assumed to be contained in the logic; however, to make
the presentation clearer, the axioms of this theory are not made explicit here. The
other syntactic categories are:

e State Propositions (SP): p::=a | —p|p— p', where a € A;

e Action terms (AT): t := g | pid*q, where g € T', p,q € SP, | € TIME, u € TIME
U{oc }, and I < u;

e Formulae: ¢ :=a |t1 Dta| b | ¢ = &' | [t]¢ | [ Ip, where a € A, t,t1,t2 € AT,
and p € SP.

There are also two unary function symbols, I and u, which can be applied to action
terms to yield their time bounds (i.e., elements of TIME U{oc} — see below). The time
bounds I(g) and u(g) of a primitive action symbol g are of an extra-logical nature;
the time bounds I(p,dYq) and u(p,d¥q) of an action term built with the § operator
are, respectively, the constants = and y, and can be considered abbreviations thereof.

We do not discuss this framework here. The reader is referred to [2, 5].
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2.2 Semantics

The semantics of RETOOL is defined over structures that are based on the notion of
timed transition systems [8]: given a set A of attribute symbols and a set T' of action
symbols, a timed frame F for A and T is a sextuple (W, —, [, u, I, wq), where

e IV is a set of states;

e For each g € ', & C W x W is the transition relation for action g;

e [ maps each g € T' to an element I(g) € TIME;

e u maps each g € I' to an element u(g) € TIME U{co} such that u(g) > i(g);

el : A — 2W is an interpretation of the attributes, where each a € A is assigned
the set of worlds where a is true;

e wy is the initial state.

Every action g € T has a lower bound /(g) and an upper bound u(g). Intuitively, the
lower bound defines the minimum delay that must be observed for the transition to
take place (provided all the necessary conditions for the occurrence of such a transition
are satisfied). The upper bound defines the maximum delay during which the tran-
sition must occur (again, provided all necessary conditions are satisfied). Formally,
lower and upper bounds are defined through the use of the notion of computation:

A timed state sequence [8] for a timed frame is a pair p =< 0, T >, where o is an
infinite sequence of states (o; € W) and T is an infinite sequence of corresponding
times (T; € TIME), satisfying:

e monotonicity: for all i > 0, either T;41 = T;, or (T;41 > T; and 041 = 0;).
e progress: for every ¢t € TIME, there is ¢ > 0 such that T; > ¢.

A computation [8] over a timed frame is a timed state sequence < o, T > such that

e ¢ is a computation of the underlying transition system, i.e., for every i > 0, there

is a transition ¢ (i) such that o; ”ﬁ)) Tit1;
e (lower bound): for every ¢ > 0 in the domain of o, there is a j < i such that
T, — T, > I(o(i)) and o(i) is enabled in every state gy for j < k <.

e (upper bound): for every g € I and ¢ > 0, there is j > i with T; —T; < u(g) such
that either g is not enabled at ¢; or g = o (j).

The denotation of a state proposition p in a timed frame F is the set of states
defined as follows:

e [a] = I(a);
o [-p]” =W\ [p]”;
o[p— 1" =W\ [p") U]’

The denotation of an action term ¢ in a timed frame F is the set of transitions
defined as follows (where en(g) is the set of states where g is enabled):

o [917 = {(w,w') |w = w'};
o [8"ql” = {(w,w') | 3g €T [(w S w') A en(g) C[p]” A
Vo, o' (v S 0') = (w' € [q]7)) A (1 <I(g) <u(g) <u)}
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Finally, the satisfaction of a formula by a timed frame F at a state w is defined by:

o Fow = piff w € [p]”;

o Fow = (t1 D to) iff [t1]7 C [t2]7;

o F,w = —¢ iff not F,w = ¢;

e FowlE ¢ — ¢ it Fow|= ¢ implies F,w |= ¢';

o Fow = [tg iff F,w' |= ¢ for every w' such that (w,w') € [t]”;
e Fow = [Ipiff Fywo = p.

2.3 Axiomatization

The axiom schemes and rules of inference below comprise an adequate axiomatization
of RETOOL. In what follows, A represents a set of RETOOL formulae, the derivability
relation  is defined in the usual manner, and enabled(t) is an abbreviation for the
formula —[t].L (see comments in the next section). For lack of space, we do not prove
the soundness of this axiomatization, but it should be easy to see that the axioms and
rules below are indeed sound for the Necessary Condition Semantics of RETOOL.

2.4 Comments

e “D” is the subsumption operator. To say that action term #; subsumes action
term to is to say that every action denoted by t; is also denoted by #» (but not
necessarily the other way around). Subsumption can be seen as a refinement on
actions: the actions denoted by ¢; refine those denoted by #,.

e We define, for an action term ¢, the set en(t) = {w € W | Jw' such that (w,w') €
[t]}. This is the set of all states where at least one of the actions in the denotation
of t is enabled. Note that saying that a world w is a member of en(t) is equivalent
to saying that the formula —[t]L is true in w. In fact, we define the abbreviation
enabled(t) to mean —[t] L.

The present work departs from the semantics of the ¢ operator given in [6]. There,
[pi16*q] is defined as the set of all transitions (w,w’) such that w € [p] implies w’ € [q].
This semantics mirrors the meaning of the Hoare triples {p}g{q} (see [9]), namely
that all terminating runs of program g starting in states satisfying p will end in states
satisfying ¢ (and there is no guarantee about runs that start in states not satisfying
p). According to this view, p could be considered a precondition of program g, with
q a relative postcondition.

Now, the semantics presented here requires that for (w,w’) to be denoted by p;d%q,
it must be the case that w 2 w' for some g such that en(g) C [p]- The requirement
that p must be true in all worlds where g is enabled forces us to see p as a necessary
condition of the program represented by g. It is simply impossible to have runs of g
starting in states not satisfying p.

This “necessary-condition” semantics (NCS) of the § operator seems to us more
appropriate to reason about timed transition systems as abstract models of complex
real-time reactive systems. The “functionality” of an action, in the sense captured
by Hoare triples, can still be expressed using action modalities. I.e., the Hoare triple
{p}g{q} is closely related to the RETOOL formula p — [¢]q.
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All axioms and rules of propositional calculus

[t](d — ) = ([t]p — [t])
[lp—=q) — ([lp—1[lg)

[lp— [t Ip
][ Ip — (enabled(t) — [ ]p)

[]=p < =[]p

AFé  AFp
AF[tle AF[lp

AFenabled(t) > p Abtlg AFILI({) <u(t)<u

At D pdtg
£t
(t1 Dta) = ((t2 D t3) = (t1 D t3))
(tr > t2) = ([t2]¢ = [11]9)
(t O pi6¥q) — (enabled(t) — p)
(t D pd“q) — ([tla)
(t D pidtq) — (enabled(t) — 1 < U(t) < u(t) < u)
(1 D t2) ¢ [1](t1 D 1)

l(pidtq) =1 u(pid'q) =u

FiGg. 1. An Axiomatization of RETOOL

3 Weak Completeness

In order to show that the axiomatization is complete, we build a canonic model, whose
worlds are maximally consistent sets of RETOOL formulae (see [7] for definitions and
properties of maximally consistent sets), and whose transitions are determined from
the contents of the worlds in the fashion described below. Since every consistent
formula is a member of some maximally consistent set, and since satisfaction of a
formula ¢ in a world w of the canonic model is equivalent to ¢ being a member of w
(proven in the Coincidence Lemma), this ensures that every consistent formula will

be satisfied in the canonic model.
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3.1 Construction of the Canonic Model

The set A° of attribute symbols of the canonic model is arbitrary: A = {ay,as, ...}
For the construction of the set ['“ of action symbols, we introduce the following
definitions:

DEFINITION 3.1
Foreachpe SP*p={r| Fp+r}

DEFINITION 3.2 B
re={“pé"q” | p,q € SP\ L,l € TIME,u € TIME U {o0}}

We define here an action symbol for each quadruple (p,q,l,u) composed of satis-
fiable state propositions p and ¢ (up to tautological equivalence) and time bounds [
and w. In order to ensure that these action symbols have the desired meaning, we
define the following set ¥ of RETOOL formulae:

DEFINITION 3.3 ~
Y = {(“po"q” D pido“q) A (md¥q O “po*q”) | p,g € SP\ L, I € TIME, u €
TIME U {oc}}

Note that in every model of 3, each action symbol “p;0“¢” will function as a
“witness” to action term p;d%q, the denotation of the symbol corresponding exactly
to the denotation of the term.

More extra-logical information is necessary to build the canonic model: we must
specify the initial state through a set © of formulae. If we want state propositions
P1, P2, ... to be true at the initial state wp, we define © = {[]p1, ][ ]p2,...}.> Obviously,
the set {p1,ps,...} must be consistent.

We also introduce some special notation to refer to “demodalized” formulae, where
w is a set of formulae and ¢ is any action term:

DEFINITION 3.4

w\ [t] = {0 ] [t]¢ € w}

DEFINITION 3.5 (The canonic model)
Given the sets A°, ¥, © and I'°, we define the canonic model as M® = (W¢, {| g €
e}, e ut, I wi), where

we = {® | ® is a maximally consistent set containing ¥ U ©}.

R {(w,w") e Wex W |w\ [“pdé"q"] Cw'}

is such that 1°(“p;6"q") = for every “p;d4q” € .

s such that u¢(“p;6%q”) = u for every “p;6“q” € T'°.

is such that I¢(p) = {w € W° | p € w} for every p € SP.
is some world in W satisfying © \ [].

S}\‘ ~
o

S Q

e e e

Central to the completeness proof is the Coincidence Lemma:

Ywe W' Vo: pgew & M wkE-

2We refer to the set of state propositions as SP, and to the set of action terms as AT.

3Af‘,tually, this leads to a class of canonic models, one model for each choice of ©.
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This is proved by induction over the formation of ¢. We sketch the proof of only one
case here, using the following lemmas:*

LEmMMA 3.6 ~

For all w € W€, for all p,q € SP\ L, for all | € TIME ,u € TIME U {oo}, for all
t € AT, and for all formulae ¢:

wktopd'y & wkiD et
wk pdtqg Dt & wk “pétq’ Dt
w b [pd¥qlo & w bk [“pdvq" ¢

LemMma 3.7 B
For all w € W€, for all p,q € SP\ L, for all | € TIME ,u € TIME U {o0}:

w € en(pdtq) <  wkh enabled(pd”q)

By lemma 3.6, the equivalence also holds for the formula enabled(“p,0*q”).

LEMMA 3.8
In the canonic model, [“p;0%¢”] = [pi1d*q].

The subsumption case of the Coincidence Lemma: ¢ = t; D 1

By lemmas 3.6 and 3.8, we may restrict ourselves to the case where t; = p;0“q and
to = 10" s:

(=) Suppose p;dtq D rmd"s € w. Let (w,w') € [pd*q]. Then

p1dtq D rpd”s € w = (by axiom (S3))

Vo [rmd"sle — [mdqlé € w = (as w is maximally consistent)
Vo [rmd"slp ew = [pd'gld ew = (asw)\ [pd¥q] Cw')

w\ [rmd™s] C w' = (by the definition of M¢)
(w,w") € [rm,d™s]

(<) Suppose w |= p0“q D 1, 0"s. Then, for every w € W€,
[pi6%q] C [rmd™s] =
w |= enabled(pdtq) = wl=r <& (bylemma 3.7 and the definition of I¢)
w F enabled(p;d*q) = whkr <& (asw is maximally consistent)
w b enabled(p;d*q) — r & (as w is arbitrary containing ¥ U ©)
YU O F enabled(pidtq) — r
As for the postcondition, we have that, for all w € M€,
[pidtq] C [rmd™s] =
w = [pd™qls = (by lemma 3.8)
w k- [pdtqls < (as w is arbitrary containing ¥ U ©)
YUOF [pdg]s
As for the time bounds, we have that m <[ < u < n. There are derived rules that
state that necessary conditions, postconditions and time bounds can be weakened.
Therefore, X U O F pd“q D rpd™s, and we conclude that, as any w € M€ contains
Y U O, it is the case that w F p;d%q D r,,,0"s.

4Detailed proofs of these and all other relevant lemmas can be found in [1].
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4 Abstracting Temporal Properties of Systems

Since the semantics of the time-bounded § operator is given in terms of computations,
it is only natural that we investigate the combination of RETOOL with a linear-time
temporal logic, whose models are also computations. In these concluding remarks,
we briefly describe the nature of this combination, which has been studied for the
MIS semantics of RETOOL in [6] and can be easily adapted to the NCS semantics
presented in this paper.

The temporal logic chosen was MTL (see [4]), which features time-bounded tem-
poral operators Xpg. (next state) and Ug,. (until), where ¢ € TIME U{oco} and R
is a relation on TIME. We extend this language by adding RETOOL’s action terms
as primitive propositions and stipulate that an action term ¢ is true at step i of a
computation iff the denotation of ¢ contains the action responsible for the transition
taken at step i.

The following are examples (taken from [6] and modified to fit our NCS semantics)
of proof rules relating RETOOL and MTL:

enabled(t) = r t D ppd™>q
t—rAXoog

This rule states that an action denoted by ¢ (with p as a necessary condition and ¢
as a postcondition) establishes ¢ in the next state whenever this action is responsible
for the transition to the next state. In compliance with the definition of computation,
the transition does not take any time.

p — —enabled(t) ¢ D T 0T
p— Ggm—'t

This rule captures a safety property concerning the lower bound of an action: if
the truth of p means that action ¢ is disabled, and ¢ has lower bound z, we conclude
that, p holding in the current state, ¢ will not be taken for at least x time units (the
G<, bounded temporal operator meaning “during the next 2 time units”).

Additional rules and an example of a detailed system description can be found in [6]
for the MIS semantics. They can be easily adapted to the NCS semantics we employ
here.

5 Concluding Remarks

In this paper, we have shown how Segerberg’s § operator can be extended to define
RETOOL, an action logic meant to reason about computational timed transition
systems. Three alternative semantics have been considered for action terms built
with this operator, and a weak completeness proof has been sketched for one of these
semantics (the NCS).

It was also indicated how the combination of RETOOL with a temporal logic can
be useful in deriving properties of actions from system descriptions.

Work in progress includes the study of the ECS as an alternative semantics, with
soundness and completeness proofs, and the comparison of the ECS and NCS ap-
proaches in the specification of real-time computational systems.
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