
Usability of a Visual Language
for DL Concept Descriptions?

Fernando Náufel do Amaral

LLaRC – Laboratório de Lógica e Representação do Conhecimento,
Depto. de Ciência e Tecnologia, Pólo Universitário de Rio das Ostras,

Universidade Federal Fluminense, Rio das Ostras, RJ, Brazil
fnaufel@ic.uff.br

Abstract. The development and use of ontologies may require users
with no training in formal logic to handle complex concept descriptions.
To aid such users, we propose a new visualization framework called
“model outlines”, where more emphasis is placed on the semantics of
concept descriptions than on their syntax. We have conducted a usability
study comparing model outlines and Manchester OWL, with results that
indicate the potential benefits of our visual language for understanding
concept descriptions.

1 Introduction

When working with formal ontologies, one often needs to formally represent
conditions for membership in the defined classes. In this paper, we will call such
conditions concept descriptions, following the description logic (DL) tradition [1].

Concept descriptions are important in many scenarios related to ontology
development and use. For example, DL reasoners perform logical inferences by
manipulating concept descriptions according to a specific deductive calculus. In
many cases, users may be interested not only in the answers provided by such
reasoners, but also in the chains of reasoning that led to those answers. In order
to understand such chains of reasoning, users must be able to understand the
meaning of the concept descriptions involved. This area of study is referred to
as proof explanation [2].

Another situation where concept descriptions play an important role is in
the definition and use of ontology query languages [3]; here, building a query
may include writing modified concept descriptions that contain free variables
(representing individuals that must be returned by the query).

Because many users of formal ontologies have no specific training in logic,
the problem of representing concept descriptions in a user-friendly fashion is an
important one, and many researchers have proposed different ways of solving
it: replacing logical symbols with keywords in DL languages [4], automatically
generating natural language paraphrases of concept descriptions [5], or using
diagrams [6, 7].
? Work partially supported by research grant E-26/112.038/2008 from FAPERJ.

2 Fernando Náufel do Amaral

As an example to make this discussion more concrete, consider the following
concept description in DL syntax (to be formally introduced in Sect. 2 below),
which appears in [8], a paper about proof explanation:

∃hasChild.> u ∀hasChild.¬((∃hasChild.¬Doctor) t (∃hasChild.Lawyer)) (1)

Diagrammatic representations of concept descriptions have given rise to im-
plementations of “visual” ontology browsers. One such example is the visual-
ization tool GrOWL [9], which produces the diagram in Fig. 1 for the concept
description in (1). As can be seen, the diagram is essentially an abstract syntax
tree, which offers nonspecialist users little help in understanding the semantics
of the description, especially if those users are not familiar with the DL symbols
“∃”, “∀”, “¬” and “t”. In fact, we have found this to be a common phenomenon:
many visualization frameworks for concept descriptions are too faithful to the
syntax of the representation languages (e.g., DL, OWL), a feature which may
prevent users from grasping the semantics of the concept descriptions.

Fig. 1. Diagram produced for (1) by GrOWL [9] (manually laid out)

This paper discusses model outlines, which depart from the syntax-based
tradition in that they consist of diagrams characterizing the class of models of a
given concept description. (Here, we use the term “model” in the logical sense.)
The model outline for (1), produced after applying a carefully defined set of
simplification rules to the original concept description, is presented in Fig. 2. By
adhering to some simple graphical conventions, a user can understand that the
concept description represents a set of individuals having at least one child and
having as grandchildren (if any) only doctors and non-lawyers.

Our previous papers [10, 11] introduced the first version of model outlines and
compared them to natural language paraphrases of concept descriptions. Since
then, we have reformulated the visual language so as to make it more intuitive
(e.g., including optional labeled clusters, rendering cardinality restrictions as
text and fine-tuning the placement of inner boxes). We have also altered the
conversion algorithms to conform to the new visual language.

Most importantly, we have conducted a first usability test of model outlines,
with promising results. Users from different backgrounds were shown concept

Usability of a Visual Language for DL Concept Descriptions 3

Fig. 2. Model outline for description (1)

descriptions in two formalisms: our model outlines and Manchester OWL (a
textual notation for DL which uses keywords for logical symbols, infix notation
for restrictions, syntax highlighting and indentation in order to make descriptions
more readable for nonspecialists — see [4]). We then tested ease of understanding
for each formalism by asking the users questions about the concept descriptions
shown.

This paper is structured as follows: Sect. 2 presents the syntax of model out-
lines for the description logic ALCN , at the concrete (token) and at the abstract
(type) levels, as is suitable for diagrammatic systems [12]; Sect. 3 defines the pre-
cise semantics of model outlines, in the form of algorithms that translate from
model outlines to ALCN concept descriptions; Sect. 4 discusses the translation
of ALCN concept descriptions to model outlines; Sect. 5 reports and analyzes
the results of the usability test; Sect. 6 contains our concluding remarks.

2 Syntax of model outlines

We consider the description logic ALCN , whose language of concept descrip-
tions1 is specified in Fig. 3, both in the DL syntax and in Manchester OWL.
There, A stands for a class name (i.e., an atomic concept term), R stands for a
property name (i.e., an atomic role term), and n represents a natural number.
The (set-theoretical) meaning of these descriptions is given by a nonempty set ∆
(the universe or domain) along with an interpretation I mapping each concept
description C to a set I(C) ⊆ ∆, and each role term R to a binary relation
I(R) ⊆ ∆×∆. An interpretation I must map each description in the first two
columns to the set in the third column. #S denotes the cardinality of a set S.
A literal is a description of the form A or of the form ¬A, where A is an atomic
concept term.

The concrete syntax of model outlines defines their physical representation.
What follows is an informal definition: a model outline contains clusters (solid
or dashed), arrows (solid or dashed) and boxes. The root of the model outline is
a solid cluster. A cluster may have an optional class label below it, consisting of a
disjunction or of a conjunction of literals. So may a box. A box may also have an
optional cardinality label below it, which may be of the form “(from m thru n)”,
“(m or more)”, or “(exactlym)”, withm,n natural numbers,m < n. The source of

1 Work is under way to define model outlines for more expressive languages, such as
the concept language underlying OWL 2 [13].

4 Fernando Náufel do Amaral

DL Manchester Meaning
C,D → A A I(A)

| > THING ∆
| ⊥ NOTHING ∅
| ¬C NOT C ∆− I(C)
| C uD C AND D I(C) ∩ I(D)
| C tD C OR D I(C) ∪ I(D)
| ∀R.C R ONLY C {a ∈ ∆ | ∀b.[(a, b) ∈ I(R)⇒ b ∈ I(C)]}
| ∃R.C R SOME C {a ∈ ∆ | ∃b.[(a, b) ∈ I(R) ∧ b ∈ I(C)]}
| ≤ n.R R MAX n {a ∈ ∆ | #{b | (a, b) ∈ I(R)} ≤ n}
| ≥ n.R R MIN n {a ∈ ∆ | #{b | (a, b) ∈ I(R)} ≥ n}
| = n.R R EXACTLY n {a ∈ ∆ | #{b | (a, b) ∈ I(R)} = n}

Fig. 3. ALCN concept descriptions and their meaning

an arrow may be a cluster or a box. The target of an arrow is always a box. Each
box is the target of exactly one arrow. An arrow must have a role label above
it, consisting of a role name. A box contains one or more clusters, according to
constraints that we do not include in this informal description, but which will
be made explicit in the abstract syntax below. A box may also contain at most
one “among-which” inner box, which in turn contains one or more clusters, all of
them solid. Inner boxes are never the source of arrows. A box or a cluster may
have a case widget above it.

Fig. 4 shows an example model outline. The target box of the arrow labeled
“hasAttendance” has both a class label (“Enrolled ”) and a cardinality label (“from
10 to 50”). The target box of the arrow labeled “hasAttendance” also has an
“among-which” inner box. This model outline does not have case widgets.

At this point, the reader should test the appropriateness of the choice of visual
presentation of the components of model outlines. We suggest that the reader
(without any further knowledge of the meaning of these components) formulate
a natural language description of the constraints imposed upon the individuals of
class GraduateCourse at the root of the outline. If the reader is knowledgeable
in DL syntax, the reader should also produce an ALCN concept description.
In Sect. 3 below, we explain the precise meaning of this model outline, and in
Sect. 4 we show the steps involved in its construction.

Case widgets indicate alternatives (i.e., disjunction). If a cluster or a box has
a case widget above it, the user may browse the different cases interactively, one
case at a time, by clicking on the triangles on either side of the case widget.

In Fig. 5, for example, there are 4 cases altogether, specifying objects that are
either (a) Books having all extras (if any) translated to Portuguese (and possibly
other languages), or (b) Books having all extras (if any) in Audio format (and
possibly other formats), or (c) ClassNotes having at least one Free copy in PDF
format (and possibly other formats, and other copies), or (d) ClassNotes having
at least one Low -priced copy (and possibly other copies).

Usability of a Visual Language for DL Concept Descriptions 5

Fig. 4. Example model outline

More formally, the model outline in Fig. 5 corresponds to the description

[Book u ∀hasExtras.(∃hasTranslation.Portuguese t ∃hasFormat.Audio)] t
{ClassNotes u
∃hasCopy.[(Free u ∃hasFormat.PDF) t (∃hasPrice.Low u ∀hasPrice.Low)]}

As for the abstract syntax, a model outline is formally defined as a LISP-
style list generated by the grammar in Fig. 6, in extended BNF notation. The

6 Fernando Náufel do Amaral

Fig. 5. Example model outline with case widgets

list representation is not meant for human consumption, but rather for automatic
processing by algorithms such as the ones presented in the next section.

3 Semantics of model outlines

The appearance of the components of a model outline follows some (hopefully
intuitive) graphical conventions:

Individuals are represented by clusters of diamonds. The presence of a cluster
(as opposed to a single diamond) emphasizes the idea that one or more indi-
viduals may appear in a given situation. E.g., in Fig. 4, the graduate courses
in question may have as lecturers more than one tenured department professor

Usability of a Visual Language for DL Concept Descriptions 7

〈outline〉 → 〈solidClstrCases〉
〈solidClstrCases〉 → (cases 〈solidCluster〉+)
〈solidCluster〉 → (cluster solid 〈classLabel〉 (〈arrow〉?))
〈classLabel〉 → () | (〈literal〉)

| (and 〈literal〉 〈literal〉+) | (or 〈literal〉 〈literal〉+)
〈literal〉 → 〈conceptName〉 | (not 〈conceptName〉)
〈arrow〉 → (arrow solid 〈roleName〉 (〈intrvl〉?) 〈solidBoxCases〉)

| (arrow dashed 〈roleName〉 (〈intrvl〉?) 〈dashedBoxCases〉)
〈intrvl〉 → (〈number〉 〈number〉) | (〈number〉 infty)

〈solidBoxCases〉 → (cases 〈solidBox〉+)
〈solidBox〉 → (box 〈classLabel〉 (〈solidClstrCases〉+) 〈opt〉 (〈arrow〉?))

〈opt〉 → (〈unlabeledCluster〉) | (〈innerBox〉? 〈dashedClstrCases〉?)
〈unlabeledCluster〉 → (cluster dashed () ())

〈innerBox〉 → (innerBox 〈solidClstrCases〉+)
〈dashedBoxCases〉 → (cases 〈dashedBox〉+)

〈dashedBox〉 → (box 〈classLabel〉 (〈snglDashedCluster〉) () (〈arrow〉?))
〈snglDashedCluster〉 → (cases (cluster dashed 〈classLabel〉 ()))
〈dashedClstrCases〉 → (cases 〈dashedCluster〉+)
〈dashedCluster〉 → (cluster dashed 〈classLabel〉 (〈arrow〉?))

Fig. 6. Abstract, formal syntax for ALCN model outlines

holding a CompSci or Math PhD degree and supervising at least one graduate
student from a total of 2 or more individuals.

Clusters of solid diamonds represent individuals that must exist. In Fig. 4,
it is mandatory that the graduate courses in question have as lecturer at least
one tenured department professor holding a CompSci or Math PhD degree and
supervising at least one graduate student from a total of 2 or more individuals.
Likewise, the attendance must include students and graduate students.

Clusters of dashed diamonds represent optional individuals. If the cluster is
labeled or has outgoing arrows, the individuals must belong to the corresponding
class (e.g., “Guest” in Fig. 4). If the cluster is unlabeled, the individuals may
belong to any class, subject to the constraints stipulated by the label and the
outgoing arrows of the outer box where the cluster is located (e.g., in Fig. 4, the
unlabeled cluster in the “hasLecturer ” box represents lecturers that do not have
to be tenured department professors, but that must hold a CompSci or Math
PhD degree).

As indicated in the previous remark, box labels and arrows originating from
boxes represent constraints that must be satisfied by all individuals correspond-
ing to clusters in the box. In Fig. 4, all individuals attending the graduate courses
in question must belong to class “Enrolled ”.

The absence of a dashed cluster in a box means that all the individuals
represented in the box must belong to the classes specified by their respective
labels and to the class specified by the box label and arrows (if present). This

8 Fernando Náufel do Amaral

is evident in Fig. 4, where it is required that the lecturers hold a PhD degree
only in CompSci or Math (a rather exclusivist and unfair requirement, but this
is only an example).

Dashed boxes, always the target of dashed arrows, always contain a dashed
cluster, representing optional individuals. In Fig. 4, the graduate courses in ques-
tion may or may not involve the use of (up to 2) department labs.

“Among which” inner boxes contain clusters representing individuals that
belong to subclasses of one or more classes specified in the outer box. In Fig. 4,
the attendance of the graduate courses in question consists of students, some of
which are required to be graduate students. Optionally, guests may attend.

The above remarks are included here only for pedagogical purposes. In fact,
we define the precise semantics of model outlines by means of algorithm Descr,
which, when given a model outline C (in abstract syntax), yields the ALCN con-
cept description taken as the meaning of C. Algorithm Descr calls BoxDescr
to build the concept description denoted by a box. Fig. 7 shows both algorithms.

The reader should refer to the grammar in Fig. 6 for the structure of the lists
that the algorithms manipulate. These algorithms can be modified to produce
more legible output; here, their only purpose is to serve as the precise semantics
of model outlines. When given as input the model outline in Fig. 2, e.g., algorithm
Descr returns the following description, which is equivalent to (1):

⊥ t {> u ∀hasChild.(⊥ t⊥ t>) u > u ∃hasChild.(⊥ t>)
u ∀hasChild.[> u (⊥ t ∀hasChild.(⊥ t⊥ t (Doctor u ¬Lawyer)))]}

4 Constructing model outlines

We have presented elsewhere [10] detailed algorithms for translating ALCN
concept descriptions into model outlines. Here, we incorporate some changes
to the algorithms (e.g., to account for labeled optional clusters) and give a more
informal explanation of the main steps involved in such a translation, using as
a working example the concept description that originated the model outline in
Fig. 4.

Given an ALCN concept description C, we start by converting C to modified
disjunctive normal form (mDNF), applying simplification rules in the process.
A concept description is in mDNF if it fits the pattern

D1 t . . . tDn

where each disjunct Di is a conjunction of the form

C1 u · · · u Cp

where each conjunct Cj is either a literal, or a collection of “intervals” of natural
numbers (whose upper bound may be∞) associated to a role R, or a description
of the form ∀R.C ′ or of the form ∃R.C ′, where C ′ is itself in mDNF.

Usability of a Visual Language for DL Concept Descriptions 9

Descr(C) � C has the form (cases C1 · · ·Cm)
1 Descr ← ⊥
2 for each Ci in C1, . . . , Cm � Ci has the form (cluster S L (A1 · · ·An))
3 do if L = ()
4 then Case ← >
5 else Case ← L
6 for each Aj in A1, . . . , An

7 do Case ← Case uBoxDescr(Aj)
8 Descr ← Descr tCase
9 return Descr

BoxDescr(A) � A has the form (arrow S RN (I1 · · · In) (cases B1 · · ·Bm))
1 BDescr ← ⊥
2 if n = 0 � No cardinality restrictions
3 then Card ← >
4 else Card ← ⊥
5 for each Ij in I1, . . . , In � Ij is “interval” of the form (X Y)
6 do if Y = infty
7 then Card ← (Card t ≥ X.RN)
8 else Card ← (Card t (≥ X.RN u ≤ Y.RN))
9 for each Bi in B1 · · ·Bm

10 � Each box case Bi has the form (box BL (C1 · · ·Cp) Opt (A′
1 · · ·A′

q))
11 do Universal ← ⊥; Existentials ← >
12 for each Cj in C1, . . . , Cp � Cluster cases
13 do Universal ← Universal tDescr(Cj)
14 if Cj has the form (cluster solid . . .)
15 then Existentials ← Existentials u ∃RN .Descr(Cj)
16 if Opt contains (innerBox C′

1 · · ·C′
r)

17 then for each C′
j in C′

1, . . . , C
′
r

18 do Existentials ← Existentials u ∃RN .Descr(C′
j)

19 if Opt contains (cluster dashed () ())
20 then Universal ← >
21 if Opt contains (cases C′′

1 · · ·C′′
s) � Optional clusters

22 then for each C′′
j in C′′

1 , . . . , C
′′
s

23 do Universal ← Universal tDescr(C′′
j)

24 Universal ← ∀RN .(Universal)
25 if BL = ()
26 then BCase ← Universal u Existentials
27 else BCase ← ∀RN .BL u Universal u Existentials
28 for each A′

j in A′
1, . . . , A

′
q � Box arrows

29 do BCase ← BCase u ∀RN .BoxDescr(A′
j)

30 BDescr ← BDescr tBCase
31 return Card uBDescr

Fig. 7. Algorithms to convert from model outlines to ALCN

10 Fernando Náufel do Amaral

The modification is in the way number restrictions are represented: using
appropriate rewrite rules, any conjunction of cardinality restrictions over a role
Ri can be converted to a collection of “intervals” of natural numbers.2

To each Di we then apply the simplification rule

∀R.C1 u . . . u ∀R.Cn � ∀R.(C1 u . . . u Cn)

As a result, we obtain C ′, which is a disjunction D′
1 t . . . tD′

n, where each D′
i

can be written as
L1 u . . . u Lm u C1 u · · · u Cp

where each Li is a literal, and each Cj can be written as

∀R.F u ∃R.G1 u . . . u ∃R.Gq uK

where F and all the Gi are in mDNF and K is a collection of intervals of natural
numbers representing cardinality restrictions over role R. Any (or all) of these
elements may be absent. Note that we have grouped the conjuncts according to
the role R they refer to. Later, when the model outline is built, each of these
groups will originate an arrow labeled by R.

Following these guidelines, the simplified mDNF of the concept description
corresponding to the example model outline in Fig. 4 is found to be

GraduateCourse (2a)
u ∀hasLecturer. (2b)

[∀holdsPhDIn.(CompSci tMath) (2c)
u ∃holdsPhDIn.(CompSci tMath)] (2d)

u ∃hasLecturer.(DeptProfessor u Tenured u ∃supervises.GradStudent (2e)
u {[2,∞]}.supervises) (2f)

u {[2, 2]}.hasLecturer (2g)
u ∀hasAttendance.[(Student u Enrolled) t (Guest u Enrolled)] (2h)
u ∃hasAttendance.Student (2i)
u ∃hasAttendance.GradStudent (2j)
u {[10, 50]}.hasAttendance (2k)
u ∀usesLab.(DeptLab u ¬Closed) (2l)
u {[0, 2]}.usesLab (2m)

Note how the constraints have been grouped by the roles they act upon. Note
also how the cardinality constraints in lines (2f), (2g), (2k) and (2m) have been
written with (singleton) collections of intervals of natural numbers.

Two transformations must be effected before the model outline can be built.
2 For role R, the interval [m,n] represents the constraint (≥ m.R u ≤ n.R). Likewise,

[m,m] represents (= m.R), and [0,m] represents (≤ m.R), and [m,∞] represents
(≥ m.R).

Usability of a Visual Language for DL Concept Descriptions 11

The first one concerns lines (2b)–(2d), where the set of objects related to the
lecturers through holdsPhDIn is closed : i.e., the lecturers must hold some PhD
degree in CompSci or Math and only PhD degrees in CompSci or Math.

The algorithm detects such a closure whenever it finds conjuncts of the form

∀R(C1 t · · · t Cn) u ∃R.C1 u · · · u ∃R.Cn

Here, we have n = 1 and C1 = CompSci tMath. Then, to indicate the closure,
the algorithm refrains from adding a dashed, unlabeled cluster to the target box
of the holdsPhDIn arrow (see Fig. 4).

The second transformation is similar: in lines (2h)–(2j), we can see there
is some sort of closure related to the role hasAttendance, but the situation is
more complicated. In fact, this is the general case, which also includes the first
transformation. Whenever the conjuncts for role R are of the form

∀R[(C1 uD) t · · · t (Cn uD) t (Cn+1 uD) t · · · t (Cn+p uD)]
u ∃R.C1 u · · · u ∃R.Cn u ∃R.F1 u · · · u ∃R.Fq

where D is a conjunction (with D = > as the trivial case) it proceeds as follows:

– Solid clusters for C1, . . . , Cn are created in the main target box for the R-
arrow.

– The main target box for the R-arrow gets D as a label. If D = >, this label
is not shown.

– The main target box for the R-arrow gets an “among which” inner box con-
taining solid clusters for F1, . . . , Fq.

– Dashed clusters for Cn+1, . . . , Cp are created in the main target box for the
R-arrow.

In our example description, in lines (2h)–(2j), we have that n = 1, and
C1 = Student, and D = Enrolled, and p = 1, and C2 = Guest, and q = 1, and
F1 = GradStudent.

5 Evaluation

We have conducted a usability study in order to evaluate our proposed diagram-
matic notation. The main aim was to test the usefulness of model outlines for
the understanding of complex concept descriptions.

Note that it is the model outline notation itself that is being evaluated, not
a specific graphical user interface (GUI) implementing the notation. Thus, the
focus of the study is on understanding, not on interaction. We find this to be an
advantage, as changes can be made to the notation before we are committed to
a specific GUI, and problems can be identified in relation to specific features of
the notation, so that special attention can be given to these problems in order
to solve or mitigate them through the use of appropriate human interaction
techniques. From a practical point of view, this potentially reduces the need for
radical, costly changes after implementation.

12 Fernando Náufel do Amaral

Likewise, we have chosen model outlines for the simpler ALCN language
so we could find out early if something needs to be changed in our most basic
assumptions. The result of this test will help us design the extensions of model
outlines to deal with more expressive concept languages.

Following [14], we defined our main goal as: Model outlines can help users
with little or no training in Logic to understand complex concept descriptions.
In particular, model outlines are more effective than Manchester OWL for this
task.

Manchester OWL (see Fig. 3 and also [4]) is a textual notation for DL which
uses keywords for logical symbols (e.g., “SOME” for “∃”), infix notation for
restrictions (e.g., “hasChild SOME Man” for “∃hasChild.Man”), syntax high-
lighting and indentation in order to make descriptions more readable for non-
specialists. So, we are comparing our diagrammatic notation with a textual no-
tation designed for the same target audience. (As the test participants were all
Brazilians, we used Portuguese translations of the Manchester OWL keywords.)

Next, we defined a set of concerns, in the form of questions like: Can users
understand the meaning of X?, where X is one of the elements present in model
outlines (solid clusters, dashed clusters, arrows, boxes, inner boxes, case widgets,
etc.). Specific concerns were also formulated (e.g., “Can users understand that
individuals in “among which” inner boxes are mandatory?”).

We selected 10 participants for our study ([14] recommends 6 to 12). These
participants come from several backgrounds and occupations, as detailed be-
low. All received detailed information on the procedures and on their rights as
participants. All signed terms of informed consent.

One session of the study consisted of the following activities: a pre-test ques-
tionnaire, a tutorial on notation A, a specification on domain X using notation
A, 15 questions, a post-task questionnaire, a tutorial on notation B, a specifica-
tion on domain Y using notation B, 15 questions, a post-task questionnaire, and
a post-test questionnaire. Notations A and B alternated between model outlines
and Manchester OWL. Domains X and Y alternated between graduate courses
(which included Fig. 4 of this paper) and family relations. Each participant an-
swered 15 questions for each domain. The questions for each domain were fixed,
regardless of the notation used. For each domain, half the participants answered
questions on model outlines, and half answered questions on Manchester OWL
specifications. Half the participants saw model outlines before Manchester OWL,
and half saw Manchester OWL before model outlines.

The number of correct answers and the time to answer were measured. Addi-
tional information was obtained in the form of comments collected through the
“thinking out loud” protocol [14] and through questionnaires. Table 1 shows the
occupation and the number of correct answers for each participant:

For the graduate courses domain, we note the following highlights:
Question 8 was related to Fig. 4 of this paper, and elicited 5 errors using

Manchester OWL, and no errors using model outlines. The question was: “If
a course is attended only by students that are not graduate students, does the
course meet the specification?” The error was probably induced by the abbrevia-

Usability of a Visual Language for DL Concept Descriptions 13

Occupation
Correct answers
(model outlines)

Correct answers
(Manchester OWL)

Logician 15 14
Theoretical physicist 15 12
Software engineer 15 12
Secretary 15 10
Nurse 13 12
Graphics designer 13 12
Social worker 13 11
Comp. Science undergrad 13 10
Production engineer 13 9
Mathematician 12 14
Totals: 137 116
Percentages: 91.3% 77.3%

Table 1. Occupation and number of correct answers for each participant

tion recommended in [4]: “hasAttendance SOME [Student,GradStudent]”, which
seems to have evoked the idea that the bracketed list consisted of a set of al-
ternatives. This question was answered correctly by all participants using model
outlines, which indicates that users understood the meaning of “among which”
inner boxes.

Question 14 elicited 4 errors using Manchester OWL, and 3 errors using
model outlines. This question was about a specification consisting of 4 cases.
The situation proposed in the question satisfied exactly one of the 4 cases. With
Manchester OWL, the participants had difficulty in finding their way among
multiple parentheses and complex disjunctions. With model outlines, they ap-
parently thought that the proposed situation had to satisfy all cases.

For the family relations domain, we note the following highlights:

Question 6 elicited 4 errors using Manchester OWL, and no errors using
model outlines. This question asked if a person satisfying the given specification
could have jobless children. The specification in Manchester OWL included the
sentence “hasChild SOME (Man AND worksAt ONLY Hospital)”. Apparently,
the users forgot that “ONLY” (which stands for “∀”) does not imply the existence
of objects. In the model outline, the presence of a dashed cluster, a dashed box
and a dashed arrow made it clear that existence was not required.

Question 8 elicited 3 errors using Manchester OWL, and 1 error using model
outlines. This question asked if a person satisfying the given specification had
to have a grandchild working as a surgeon. Some users found it confusing to
follow the composition of roles (hasChild–hasChild), and were again, as in ques-
tion 8 about graduate courses, confused by the Manchester OWL abbreviation
“SOME [· · ·]”. In the model outline, the presence of a solid cluster labeled Sur-
geon inside an “among which” inner box made the correct answer more clear.

14 Fernando Náufel do Amaral

Domain and
type of question

Correct answers
(model outlines)

Correct answers
(Manchester OWL)

Family, no cases 94% 72%
Courses, no cases 96% 84%
Family, with cases 84% 72%
Courses, with cases 84% 80%

Table 2. Number of correct answers per domain and type of question

One trend was clearly observed in both domains: specifications that involve
cases (i.e., complex disjunctions), such as the one in Fig. 5 of this paper, are
more difficult to understand than those that do not, as Table 2 indicates.

Among the comments offered by the participants, many indicated confusion
due to the way cases were presented in model outlines (like in Fig. 5 of this paper,
the layout consisted of 4 diagrams on a single page). Some users thought that
all 4 diagrams had to be satisfied. This is clearly one weakness of model outlines
(on paper) that we must try to eliminate in the GUI implementation. We predict
that such confusion will not arise if the user interacts with the model outline
(e.g., dynamically expanding and collapsing cases). The GUI should also make
clear when clusters in different cases actually correspond to the same cluster, by
showing one single cluster which can be expanded in different ways.

As for time: in the courses domain, each user took in average 28 seconds per
question, regardless of the notation. In the family relations domain, each user
took in average 26 seconds per question with model outlines, but 40 seconds per
question with Manchester OWL.

Of the 10 participants, 5 said they preferred model outlines, 4 said they liked
both notations equally well, and 1 said both notations were equally bad.

6 Conclusions

The main achievements of the work related here are the reformulation of our
model outline notation and the results of our first usability test, comparing
model outlines to Manchester OWL.

Ontology visualization is a very active field of study. The survey [6] discusses
over 40 ontology visualization tools, all of them developed in the past 10 years.
All of those tools are general, in the sense that they use one single visualiza-
tion framework to show several types of information about the ontology: the
subsumption hierarchy, roles, etc. In particular, those tools show concept de-
scriptions either textually (e.g., Protégé) or in the form of abstract syntax trees
(as in Fig. 1 of this paper).

Model outlines, on the other hand, are specialized, having been designed
specifically to show concept descriptions. Although the notation used is new, our
usability test indicates it is intuitive enough to be understood by nonspecialists.
The specialized nature of model outlines suggests that they can be integrated

Usability of a Visual Language for DL Concept Descriptions 15

with a more general tool, so that users can easily switch views, e.g., from the
subsumption hierarchy as a tree to the definition of a class as a model outline.

We are currently implementing a concept description browser based on model
outlines, as a Protégé plugin. We are taking special care to rely on graphical con-
ventions and interaction techniques that profit from the vast body of knowledge
related to visual perception and cognitive principles, as described, e.g., in [15].

Work is also under way to extend model outlines to the concept language
associated to OWL 2 [13].

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., eds.:
The Description Logic Handbook. 2nd edn. Cambridge University Press (2007)

2. McGuinness, D.L., da Silva, P.P.: Explaining answers from the semantic web: the
inference web approach. Journal of Web Semantics 1(4) (2004) 397–413

3. Bailey, J., Bry, F., Furche, T., Schaffert, S.: Web and semantic web query languages:
A survey. In Eisinger, N., Maluszynski, J., eds.: Reasoning Web. Volume 3564 of
Lecture Notes in Computer Science., Springer (2005) 35–133

4. Horridge, M., Drummond, N., Goodwin, J., Rector, A., Stevens, R., Wan, H.: The
Manchester OWL syntax. In: OWL: Experiences and Directions. (2006)

5. Fuchs, N.E., Kaljurand, K., Schneider, G.: Attempto Controlled English meets
the challenges of knowledge representation, reasoning, interoperability and user
interfaces. In: FLAIRS 2006. (2006)

6. Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C., Giannopoulou, E.: Ontology
visualization methods—a survey. ACM Comput. Surv. 39(4) (2007) Article 10

7. Gaines, B.R.: Designing visual languages for description logics. Journal of Logic,
Language and Information 18(2) (2009) 217–250

8. Borgida, A., Franconi, E., Horrocks, I., McGuinness, D.L., Patel-Schneider, P.F.:
Explaining ALC subsumption. In: International Workshop on Description Logics
(DL’99), Linköping, Sweden. (1999)

9. Krivov, S., Williams, R., Villa, F.: GrOWL: A tool for visualization and editing
of OWL ontologies. Journal of Web Semantics 5(2) (2007) 54–57

10. do Amaral, F.N., Bazílio, C.: Visualization of Description Logic models.
In: The 21st International Workshop on Description Logics (DL2008), Dres-
den, Germany. (2008) Available at http://sunsite.informatik.rwth-aachen.
de/Publications/CEUR-WS/Vol-353/NaufelMartins.pdf.

11. do Amaral, F.N.: Visualizing the semantics (not the syntax) of concept de-
scriptions. In: Proceedings of VI TIL, Vila Velha, ES. (2008) Available at
http://www.nilc.icmc.usp.br/til/til2008/p336-do_amaral.pdf.

12. Howse, J., Molina, F., Shin, S.J., Taylor, J.: On diagram tokens and types. In:
DIAGRAMS ’02: Proceedings of the Second International Conference on Diagram-
matic Representation and Inference, London, UK, Springer-Verlag (2002) 146–160

13. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proc.
of the 10th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR2006), AAAI Press (2006) 57–67

14. Dumas, J., Redish, J.: A Practical Guide to Usability Testing. Intellect (1994)
15. Ware, C.: Information Visualization: Perception for Design. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA (2004)

